Text Indexing

Lecture 12: Optimal r-Index

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License ©(1)(0): www.creativecommons.org/licenses/by-sa/4.0 | commit 0cd47f0 compiled at 2024-01-29-11:42

Today: OptBWTR

	Time (locate)	Time (count)	Space (words)
r-index [GNP20]	$O\left(\|P\| \log \log _{w}(\sigma+n / r)+\right.$ occ $)$	$O\left(\|P\| \log \log _{w}(\sigma+n / r)\right)$	$O(r)$
	$O(\|P\|+$ occ $)$	$O(\|P\|)$	$O(r \log \log (\sigma+n / r))$
OptBWTR [NT21]	$O\left(\|P\| \log \log _{w} \sigma+o c c\right)$	$O\left(\|P\| \log \log _{w} \sigma\right)$	$O(r)$

Recap: Burrows-Wheeler Transform

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text

Recap: Burrows-Wheeler Transform

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text

Recap: Burrows-Wheeler Transform

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text

Recap: Burrows-Wheeler Transform

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text

$$
T=a b a b c a b c a b b a \$
$$

F	\$	a	a	a	a	a	b	b	b	b	b	C	C
	a	\$	b	b	b	b	a	a	b	C	C	a	a
	b	a	a	b	C	C	\$	b	a	a	a	b	b
	a	b	b	a	a	a	a	C	\$	b	b	b	C
	b	a	C	\$	b	b	b	a	a	b	C	a	a
	C	b	a	a	b	C	a	b	b	a	a	\$	b
	a	C	b	b	a	a	b	C	a	\$	b	a	b
	b	a	C	a	\$	b	C	a	b	a	b	b	a
	C	b	a	b	a	b	a	b	C	b	a	a	\$
	a	c	b	C	b	a	b	b	a	a	\$	b	a
	b	a	b	a	a	\$	C	a	b	b	a	C	b
	b	b	a	b	b	a	a	\$	C	C	b	a	a
L	a	b	\$	C	C	b	b	a	a	a	a	b	b
LF	2	7	1	12	13	8	9	3	4	5	6	10	11

Recap: Burrows-Wheeler Transform

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text

$T=a b a b c a b c a b b a \$$

Recap: Backwards Search in the BWT

```
Function BackwardsSearch( \(P\) [1..n], C, rank):
    \(s=1, e=n\)
    for \(i=m, \ldots, 1\) do
        \(s=C[P[i]]+\operatorname{rank}_{P[i]}(s-1)+1\)
        \(e=C[P[i]]+\operatorname{rank}_{P[i]}(e)\)
        if \(s>e\) then
            return \(\emptyset\)
    return \([s, e]\)
```

- no access to text or $S A$ required
- no binary search
- existential queries are easy
- counting queries are easy
- reporting queries require additional information
- example on the board

Recap: The r-Index [GNP20] (1/3)

Given a text T of length n over an alphabet Σ and its $B W T$, the r-index of this text consists of the following data structures

Recap: The r-Index [GNP20] (1/3)

Given a text T of length n over an alphabet Σ and its $B W T$, the r-index of this text consists of the following data structures

Array I

- I[i] stores position of i-th run in BWT

Recap: The r-Index [GNP20] (1/3)

Given a text T of length n over an alphabet Σ and its $B W T$, the r-index of this text consists of the following data structures \square

Array I

- I[i] stores position of i-th run in BWT

Array L'

- $L^{\prime}[i]$ stores character of i-th run in BWT
- build wavelet tree for L^{\prime}

Recap: The r-Index [GNP20] (1/3)

Given a text T of length n over an alphabet Σ and its $B W T$, the r-index of this text consists of the following data structures

Array I

- I[i] stores position of i-th run in BWT

Array L'

- $L^{\prime}[i]$ stores character of i-th run in BWT
- build wavelet tree for L^{\prime}

Array R

- lengths of BWT runs stably sorted by runs' characters
- accumulate for each character by performing exclusive prefix sum over run lengths'

Recap: The r-Index [GNP20] (1/3)

Given a text T of length n over an alphabet Σ and its $B W T$, the r-index of this text consists of the following data structures \qquad

Array I

- I[i] stores position of i-th run in BWT

Array L'

- $L^{\prime}[i]$ stores character of i-th run in BWT
- build wavelet tree for L^{\prime}

Array R

- lengths of BWT runs stably sorted by runs' characters
- accumulate for each character by performing exclusive prefix sum over run lengths'

Array C'

- $C^{\prime}[\alpha]$ stores the start of the run lengths in R for each character $\alpha \in \Sigma$ starting at 0

Recap: The r-Index [GNP20] (1/3)

Given a text T of length n over an alphabet Σ and its $B W T$, the r-index of this text consists of the following data structures

Array I

- I[i] stores position of i-th run in BWT

Array L'

- $L^{\prime}[i]$ stores character of i-th run in BWT
- build wavelet tree for L^{\prime}

Array R

- lengths of BWT runs stably sorted by runs' characters
- accumulate for each character by performing exclusive prefix sum over run lengths'

Array C'

- $C^{\prime}[\alpha]$ stores the start of the run lengths in R for each character $\alpha \in \Sigma$ starting at 0

Bit Vector B

- compressed bit vector of length n containing ones at positions where BWT runs start and rank-support

Recap: The r-Index (2/3)

$\operatorname{rank}_{\alpha}(B W T, i)$ with r-Index

- compute number j of run $\left(j=\operatorname{rank}_{1}(B, i)\right)$
- compute position k in $R\left(k=C^{\prime}[\alpha]\right)$
- compute number ℓ of α runs before the j-th run $\left(\ell=\operatorname{rank}_{\alpha}\left(L^{\prime}, j-1\right)\right)$
- compute number k of α s before the j-th run ($k=R[k+\ell]$)
- compute character β of run $\left(\beta=L^{\prime}[j]\right)$
- if $\alpha \neq \beta$ return k (i) i is not in the run
- else return $k+i-l[j]+1$ (i) i is in the run

Recap: The r-Index (3/3)

Lemma: Space Requirements r-Index

Given a text T of length n over an alphabet of size σ that has $r B W T$ runs, then its r-index requires

$$
O(r \lg n) \text { bits }
$$

and can answer rank-queries on the $B W T$ in $O(\lg \sigma)$. Given a pattern of length m, the r-index can answer pattern matching queries in time

$$
O(m \lg \sigma)
$$

RLBWT

- partition $B W T$ into r substrings
- BWT $=L_{1} L_{2} \ldots L_{r}$
- L_{i} is maximal repetition of same character
- $\ell_{1}=1$ and $\ell_{i}=\ell_{i-1}+\left|L_{i-1}\right|$
- $R L B W T=\left(L_{1}[1], \ell_{1}\right)\left(L_{2}[1], \ell_{2}\right) \ldots\left(L_{r}[1], \ell_{r}\right)$

RLBWT

- partition $B W T$ into r substrings
- BWT $=L_{1} L_{2} \ldots L_{r}$
- L_{i} is maximal repetition of same character
- $\ell_{1}=1$ and $\ell_{i}=\ell_{i-1}+\left|L_{i-1}\right|$
- RLBWT $=\left(L_{1}[1], \ell_{1}\right)\left(L_{2}[1], \ell_{2}\right) \ldots\left(L_{r}[1], \ell_{r}\right)$
- let δ be permutation of $[1, r]$ such that

$$
\operatorname{LF}\left(\ell_{\delta[1]}\right)<\operatorname{LF}\left(\ell_{\delta[2]}\right)<\cdots<\operatorname{LF}\left(\ell_{\delta[r]}\right)
$$

RLBWT

- partition BWT into r substrings
- $B W T=L_{1} L_{2} \ldots L_{r}$
- L_{i} is maximal repetition of same character
- $\ell_{1}=1$ and $\ell_{i}=\ell_{i-1}+\left|L_{i-1}\right|$
- RLBWT $=\left(L_{1}[1], \ell_{1}\right)\left(L_{2}[1], \ell_{2}\right) \ldots\left(L_{r}[1], \ell_{r}\right)$
- let δ be permutation of $[1, r]$ such that

$$
\operatorname{LF}\left(\ell_{\delta[1]}\right)<\operatorname{LF}\left(\ell_{\delta[2]}\right)<\cdots<\operatorname{LF}\left(\ell_{\delta[r]}\right)
$$

Lemma: LF and RLBWT

- Let $\ell_{x}<i<\ell_{x+1}$ for some $i \in[1, n]$, then

$$
L F(i)=L F\left(\ell_{x}\right)+\left(i-\ell_{x}\right)
$$

- $L F\left(\ell_{\delta[1]}\right)=1$ and

$$
L F\left(\ell_{\delta[i]}\right)=\operatorname{LF}\left(\ell_{\delta[i-1]}\right)+\left|L_{\delta[i-1]}\right|
$$

$T=a b a b c a b c a b b a \$$

BWT	a	b	\$	c	C	b	b	a	a	a	a	b	b
	a	b	\$	c^{2}		b^{2}		a^{4}				b^{2}	
LF	2	7	1	12	13	8	9	3	4	5	6	10	11

Input and Output Intervals

$T=$ ababcabcabba\$

BWT	a	b	\$	C	C	b	b	a	a	a	a	b	b
	a	b	\$	c^{2}		b^{2}		a^{4}				b^{2}	
LF	2	7	1	12	13	8	9	3	4	5	6	10	11

in | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

out | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- there are r intervals
- represent domain of $L F$ by intervals
- solve LF without predecessor queries © we did not use predecessor queries
- predecessor queries are bottleneck

Disjoint Interval Sequence \& Move Query

Definition: Disjoint Interval Sequence

Let $I=\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right), \ldots,\left(p_{k}, q_{k}\right)$ be a sequence of k pairs of integers. We introduce a permutation π of $[1, k]$ and sequence $d_{1}, d_{2}, \ldots, d_{k}$ for $l . \pi$ satisfies
$q_{\pi[1]} \leq q_{\pi[2]} \leq \cdots \leq q_{\pi[k]}$, and $d_{i}=p_{i+1}-p_{i}$ for $i \in[1, k]$, where $p_{k+1}=n+1$. We call the sequence / a disjoint interval sequence if it satisfies the following three conditions:

- $p_{1}=1<p_{2}<\cdots<p_{k} \leq n$
- $q_{\pi[1]}=1$,
- $q_{\pi[i]}=q_{\pi[i-1]}+d_{\pi[i-1]}$ for each $i \in[2, k]$.

Disjoint Interval Sequence \& Move Query

Definition: Disjoint Interval Sequence

Let $I=\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right), \ldots,\left(p_{k}, q_{k}\right)$ be a sequence of k pairs of integers. We introduce a permutation π of $[1, k]$ and sequence $d_{1}, d_{2}, \ldots, d_{k}$ for $l . \pi$ satisfies $q_{\pi[1]} \leq q_{\pi[2]} \leq \cdots \leq q_{\pi[k]}$, and $d_{i}=p_{i+1}-p_{i}$ for $i \in[1, k]$, where $p_{k+1}=n+1$. We call the sequence $/$ a disjoint interval sequence if it satisfies the following three conditions:

- $p_{1}=1<p_{2}<\cdots<p_{k} \leq n$
- $q_{\pi[1]}=1$,
- $q_{\pi[i]}=q_{\pi[i-1]}+d_{\pi[i-1]}$ for each $i \in[2, k]$.

$T=$ ababcabcabba\$

in | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

out | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Move Query

$$
\operatorname{move}(i, x)=\left(i^{\prime}, x^{\prime}\right)
$$

- i position in input interval
- x input interval
- i^{\prime} position in output interval
- x^{\prime} input interval covering i^{\prime}

Answering Move Query

- $D_{p a i r}=\left(p_{i}, q_{i}\right)$ for every interval
- $D_{\text {index }}[i]$ index of input interval containing q_{i}
example on the board

Answering Move Query

- $D_{p a i r}=\left(p_{i}, q_{i}\right)$ for every interval
- $D_{\text {index }}[i]$ index of input interval containing q_{i}
example on the board 20
- Move $(i, x)=\left(i^{\prime}, x^{\prime}\right)$
- i position in input sequence
- x index of interval containing i
- $i^{\prime}=q_{x}+\left(i-p_{x}\right)$
- x^{\prime} initially $D_{\text {index }}[x]$
- scan $D_{\text {pair }}$ from x^{\prime} until $p_{x}^{\prime} \geq I^{\prime}$
- x^{\prime} index satisfying condition

Answering Move Query

- $D_{p a i r}=\left(p_{i}, q_{i}\right)$ for every interval
- $D_{\text {index }}[i]$ index of input interval containing q_{i}
example on the board

Lemma: LF and RLBWT

- Let $\ell_{x}<i<\ell_{x+1}$ for some $i \in[1, n]$, then

$$
L F(i)=L F\left(\ell_{x}\right)+\left(i-\ell_{x}\right)
$$

- $L F\left(\ell_{\delta[1]}\right)=1$ and $L F\left(\ell_{\delta[i]}\right)=\operatorname{LF}\left(\ell_{\delta[i-1]}\right)+\left|L_{\delta[i-1]}\right|$
- Move $(i, x)=\left(i^{\prime}, x^{\prime}\right)$
- i position in input sequence
- x index of interval containing i
- $i^{\prime}=q_{x}+\left(i-p_{x}\right)$
- x^{\prime} initially $D_{\text {index }}[x]$
- scan $D_{\text {pair }}$ from x^{\prime} until $p_{x}^{\prime} \geq I^{\prime}$
- x^{\prime} index satisfying condition

Moving for LF

LF Query

- input: interval containing an integer i
- output: interval containing $L F(i)$

$T=$ ababcabcabba\$

BWT	a	b	\$	c	c	b	b		a	a	a	a	b		b
	a	b	\$	c^{2}		b^{2}			a^{4}				b^{2}		
LF	2	7	1	12	13	8	9		3	4	5	6	10		11

Moving for LF

LF Query

- input: interval containing an integer i
- output: interval containing $L F(i)$

$T=$ ababcabcabba\$

BWT	a	b	\$	c	c	b	b		a	a	a	a	b		b
	a	b	\$	c^{2}		b^{2}			a^{4}				b^{2}		
LF	2	7	1	12	13	8	9		3	4	5	6	10		11

Moving for LF

LF Query

- input: interval containing an integer i
- output: interval containing $L F(i)$
- 1. move to corresponding output interval

$T=$ ababcabcabba\$

BWT	a	b	\$	c	c	b	b	b	a	a	a	a		b	b
	a	b	\$	c^{2}		b	${ }^{2}$		a^{4}					b^{2}	
LF	2	7	1	12	13	8	8	9	3	4	5	6		10	11

in | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

out | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Moving for LF

LF Query

- input: interval containing an integer i
- output: interval containing $L F(i)$
- 1. move to corresponding output interval

$T=$ ababcabcabba\$

BWT	a	b	\$	c	c	b	b	a	a	a	a	b		b
	a	b	\$	c^{2}		b^{2}		a^{4}				b^{2}		
LF	2	7	1	12	13	8	9	3	4	5	6	10	1	11

Moving for LF

LF Query

- input: interval containing an integer i
- output: interval containing $L F(i)$
- 1. move to corresponding output interval
- 2. move to input interval containing position j

$T=$ ababcabcabba\$

BWT	a	b	\$	c	c	b	b	a	a	a	a		b	b
	a	b	\$	c^{2}		b^{2}		a^{4}				b	${ }^{2}$	
LF	2	7	1	12	13	8	9	3	4	5	6	1		11

Moving for LF

LF Query

- input: interval containing an integer i
- output: interval containing $L F(i)$
- 1. move to corresponding output interval
- 2. move to input interval containing position j

$T=$ ababcabcabba\$

BWT	a	b	\$	c	c	b	b	a	a	a	a		b	b
	a	b	\$	c^{2}		b^{2}		a^{4}				b^{2}	${ }^{2}$	
LF	2	7	1	12	13	8	9	3	4	5	6	1		11

Moving for LF

LF Query

- input: interval containing an integer i
- output: interval containing $L F(i)$
- 1. move to corresponding output interval
- 2. move to input interval containing position j
- 3. linear search on at most four intervals

$T=$ ababcabcabba\$

BWT	a	b	\$	c	c	b	b		a	a	a	a		b	b
LF	a	b	\$	c^{2}		b^{2}			${ }^{4}$					b^{2}	
	2	7	1	12	13	8	9		3	4	5	6		10	11

Moving for LF

LF Query

- input: interval containing an integer i
- output: interval containing $L F(i)$
- 1. move to corresponding output interval
- 2. move to input interval containing position j
- 3. linear search on at most four intervals

$T=$ ababcabcabba\$

BWT	a	b	\$	c	c	b	b		a	a	a			b	b	
	a	b	\$	c^{2}		b^{2}			${ }^{4}$					b^{2}		
LF	2	7	1	12	13	8	9		3	4	5	6		10	11	

Moving for LF

LF Query

- input: interval containing an integer i
- output: interval containing $L F(i)$
- 1. move to corresponding output interval
- 2. move to input interval containing position j
- 3. linear search on at most four intervals

$T=$ ababcabcabba\$

BWT	a	b	\$	c	c	b	b		a	a	a			b	b	
	a	b	\$	c^{2}		b^{2}			${ }^{4}$					b^{2}		
LF	2	7	1	12	13	8	9		3	4	5	6		10	11	

Moving for LF

LF Query

- input: interval containing an integer i
- output: interval containing $L F(i)$
- 1. move to corresponding output interval
- 2. move to input interval containing position j
- 3. linear search on at most four intervals
- worst-case intervals

$T=$ ababcabcabba\$

BWT	a	b	\$	c		c	b	b	a	a	a	a	b		b
	a	b	\$	c^{2}			b^{2}		a^{4}				b^{2}		
LF	2	7	1	12		3	8	9	3	4	5	6	10		11

Moving for LF

LF Query

- input: interval containing an integer i
- output: interval containing $L F(i)$
- 1. move to corresponding output interval
- 2. move to input interval containing position j
- 3. linear search on at most four intervals
- worst-case intervals
- balance intervals

$T=$ ababcabcabba\$

BWT	a	b	\$	c	c	b	b	a	a	a	a	a	b		b
	a	b	\$	c^{2}		b^{2}		a	4				b^{2}		
LF	2	7	1	12	13	8	9	3		4	5	6	10		1

Balance the Move Data Structure (1/2)

Definition: Permutation Graph

- each interval in the input and output sequence is a node
- each input interval $\left[p_{i}, p_{i}+d_{i}-1\right.$] has a single outgoing edge pointing to output interval that contains p_{i}
- resulting graph $G(I)$ has k edges
- $G(I)$ is out-balanced if each output interval has at most three incoming edges

$T=$ ababcabcabba\$

BWT	a	b	\$	c	c	c	b	b	a	a	a		a	b	b	
	a	b	\$	c^{2}			b^{2}		a^{4}					b^{2}		
LF	2	7	1	12	13	3	8	9	3	4	5		6	10		1

in | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

out | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Balance the Move Data Structure (1/2)

Definition: Permutation Graph

- each interval in the input and output sequence is a node
- each input interval $\left[p_{i}, p_{i}+d_{i}-1\right.$] has a single outgoing edge pointing to output interval that contains p_{i}
- resulting graph $G(I)$ has k edges
- $G(I)$ is out-balanced if each output interval has at most three incoming edges

$T=$ ababcabcabba\$

BWT	a	b	\$	c	c	b	b	b	a	a	a	a		b	b
	a	b	\$	c^{2}		b	${ }^{2}$		a^{4}					b^{2}	
LF	2	7	1	12	13	8	8	9	3	4	5	6		10	11

Balance Move Data Structure (2/2)

- identify intervals with ≥ 5 incoming edges
- split it "equally"
- each new interval covers at least two input intervals

Balance Move Data Structure (2/2)

- identify intervals with ≥ 5 incoming edges
- split it "equally"
- each new interval covers at least two input intervals
- number r^{\prime} of balanced input intervals is $k+r$
- k is number of split operations
- r is number of runs in BWT

Balance Move Data Structure (2/2)

- identify intervals with ≥ 5 incoming edges
- split it "equally"
- each new interval covers at least two input intervals
- number r^{\prime} of balanced input intervals is $k+r$
- k is number of split operations
- r is number of runs in BWT

Lemma: Size of Out-Balanced Sequence

$$
k \leq r \text { and } r^{\prime} \leq 2 r
$$

Balance Move Data Structure (2/2)

- identify intervals with ≥ 5 incoming edges
- split it "equally"
- each new interval covers at least two input intervals
- number r^{\prime} of balanced input intervals is $k+r$
- k is number of split operations
- r is number of runs in BWT

Lemma: Size of Out-Balanced Sequence

$$
k \leq r \text { and } r^{\prime} \leq 2 r
$$

Proof

- output contains at least k big intervals, therefore $r^{\prime} \geq 2 k$
- $r^{\prime}=r+k$, therefore $2 k \leq r+k$
- this gives us $k \leq r$

Data Structures for Backwards Search

- r^{\prime} balanced input \& output intervals for LF queries
- rank \& select data structure build on the BWT
- rank in $O\left(\log \log _{w} \sigma\right)$ time
- select in $O(1)$ time

Data Structures for Backwards Search

- r^{\prime} balanced input \& output intervals for LF queries
- rank \& select data structure build on the BWT
- rank in $O\left(\log \log _{w} \sigma\right)$ time
- select in $O(1)$ time
- $O\left(r^{\prime}\right)=O(r)$ space
- $O\left(|P| \log \log _{w} \sigma\right)$ running time

Data Structures for Backwards Search

- r^{\prime} balanced input \& output intervals for LF queries
- rank \& select data structure build on the BWT
- rank in $O\left(\log \log _{w} \sigma\right)$ time
- select in $O(1)$ time
- $O\left(r^{\prime}\right)=O(r)$ space
- $O\left(|P| \log \log _{w} \sigma\right)$ running time
- $F\left(I_{L F}\right)$: move data structure for $L F$
- $L_{\text {first }}:$ character of each run
- $R\left(L_{\text {first }}\right)$: rank and select support on $L_{\text {first }}$

Data Structures for Backwards Search

- r^{\prime} balanced input \& output intervals for LF queries
- rank \& select data structure build on the BWT
- rank in $O\left(\log \log _{w} \sigma\right)$ time
- select in $O(1)$ time
- $O\left(r^{\prime}\right)=O(r)$ space
- $O\left(|P| \log \log _{w} \sigma\right)$ running time
- $F\left(I_{L F}\right)$: move data structure for $L F$
- $L_{\text {first }}:$ character of each run
- $R\left(L_{\text {first }}\right)$: rank and select support on $L_{\text {first }}$
- current interval is $[b, e]$ for $P[i+1$.. $m]$
- look if $P[i]$ occurs in $[b, e]$
- $\operatorname{rank}\left(L_{\text {first }}, c, j\right)-\operatorname{rank}\left(L_{\text {first }}\right) \geq 1$
- find \hat{b}, \hat{e} marking first/last occurrence of $P[i]$ in $[b, e]$
- $\hat{b}=\operatorname{select}\left(L_{\text {first }}, c, \operatorname{rank}\left(L_{\text {first }}, c, i-1\right)+1\right)$
- $\hat{e}=\operatorname{select}\left(L_{\text {first }}, c, \operatorname{rank}\left(L_{\text {first }}, c, j\right)\right)$
- use move data structure to find new b, e for $P[i . . m]$

Φ and Its Inverse

- use Φ^{-1} to compute occs of $S A[b . . b+o c c-1]$
- $\Phi^{-1}(S A[i])=S A[i+1]$
- $S A[b . . b+o c c-1]=$
$S A[b], \Phi^{-1}(S A[b]), \Phi^{-1}\left(\Phi^{-1}(S A[b])\right)$,
$\Phi^{-1}\left(\Phi^{-1}\left(\Phi^{-1}(S A[b])\right)\right), \ldots$

$T=$ ababcabcabba\$

BWT	a	b	\$	C	C	b	b	a	a	a	a	b	b
	a	b	\$	c^{2}		b^{2}		a^{4}				b^{2}	
LF	2	7	1	12	13	8	9	3	4	5	6	10	11
SA	13	12	1	9	6	3	11	2	10	7	4	8	5
Φ^{-1}	9	10	11	8	13	3	4	5	6	7	2	1	12

Φ and Its Inverse

- use Φ^{-1} to compute occs of $S A[b . . b+o c c-1]$
- $\Phi^{-1}(S A[i])=S A[i+1]$
- $S A[b . . b+o c c-1]=$
$S A[b], \Phi^{-1}(S A[b]), \Phi^{-1}\left(\Phi^{-1}(S A[b])\right)$,
$\Phi^{-1}\left(\Phi^{-1}\left(\Phi^{-1}(S A[b])\right)\right), \ldots$

$T=$ ababcabcabba\$

BWT	a	b	\$	C	C	b	b	a	a	a	a	b	b
	a	b	\$	c^{2}		b^{2}		a^{4}				b^{2}	
LF	2	7	1	12	13	8	9	3	4	5	6	10	11
SA	13	12	1	9	6	3	11	2	10	7	4	8	5
Φ^{-1}	9	10	11	8	13	3	4	5	6	7	2	1	12

- Φ^{-1} can be represented by r input \& output intervals [GNP20]
- use move data structure on balanced intervals
- keep track of $S A[b]$

out | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Conclusion and Outlook

This Lecture

- move data structure
- optimal $O(r)$ space full-text index

Linear Time Construction
LZ

Conclusion and Outlook

This Lecture

- move data structure
- optimal $O(r)$ space full-text index

Next Lecture

- longest common extension queries
- BIG Recap

Linear Time Construction

Conclusion and Outlook

This Lecture

- move data structure
- optimal $O(r)$ space full-text index

Next Lecture

- longest common extension queries
- BIG Recap

Project

- "RESULT" is a string literal in the output
- SA/LCP can be discarded, tests would be appreciated

Linear Time Construction

Bibliography I

[GNP20] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. "Fully Functional Suffix Trees and Optimal Text Searching in BWT-Runs Bounded Space". In: J. ACM 67.1 (2020), 2:1-2:54. DOI: 10.1145/3375890.
[NT21] Takaaki Nishimoto and Yasuo Tabei. "Optimal-Time Queries on BWT-Runs Compressed Indexes". In: ICALP. Volume 198. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 101:1-101:15. DOI: 10.4230/LIPIcs.ICALP.2021.101.

