

Text Indexing

Lecture 12: Optimal r-Index

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License @) (): www.creativecommons.org/licenses/by-sa/4.0 | commit 0cd47(0 compiled at 2024-01-29-11:42

www.kit.edu

Today: OptBWTR

	Time (locate)	Time (count)	Space (words)
r-index [GNP20]	$O(P \log \log_w(\sigma + n/r) + occ)$ O(P + occ)	$O(P \log \log_w(\sigma+n/r)) O(P)$	O(r) $O(r \log \log(\sigma + n/r))$
OptBWTR [NT21]	$O(P \log \log_w \sigma + occ)$	$O(P \log \log_w \sigma)$	<i>O</i> (<i>r</i>)

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text

L [а	b	\$	с	с	b	b	а	а	а	а	b	b	
L														
	b	b	а	b	b	а	а	\$	С	С	b	а	а	
	b	а	b	а	а	\$	С	а	b	b	а	С	b	
	а	С	b	С	b	а	b	b	а	а	\$	b	а	
	С	b	а	b	а	b	а	b	С	b	а	а	\$	
	b	а	С	а	\$	b	С	а	b	а	b	b	а	
	а	С	b	b	а	а	b	С	а	\$	b	а	b	
	С	b	а	а	b	С	а	b	b	а	а	\$	b	
	b	а	С	\$	b	b	b	а	а	b	С	а	а	
	а	b	b	а	а	а	а	С	\$	b	b	b	С	
	b	а	а	b	С	С	\$	b	а	а	а	b	b	
	а	\$	b	b	b	b	а	а	b	С	С	а	а	
F	\$	а	а	а	а	а	b	b	b	b	b	С	С	

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text

Recap: Backwards Search in the BWT

Function BackwardsSearch(P[1..n], C, rank): s = 1, e = nfor i = m 1 do

2 for
$$i = m, ..., 1$$
 do
3 $| s = C[P[i]] + rank_{P[i]}(s-1) +$
4 $| e = C[P[i]] + rank_{P[i]}(e)$
5 $| if s > e$ then
6 $| return \emptyset$
7 return $[s, e]$

- no access to text or SA required
- no binary search
- existential queries are easy
- counting queries are easy
- reporting queries require additional information
- example on the board

Given a text *T* of length *n* over an alphabet Σ and its *BWT*, the *r*-index of this text consists of the following data structures \blacksquare

Recap: The r-Index [GNP20] (1/3)

Given a text *T* of length *n* over an alphabet Σ and its *BWT*, the *r*-index of this text consists of the following data structures \blacksquare

Array I

I[i] stores position of i-th run in BWT

Recap: The r-Index [GNP20] (1/3)

Given a text *T* of length *n* over an alphabet Σ and its *BWT*, the *r*-index of this text consists of the following data structures

Array I

I[i] stores position of i-th run in BWT

Array L'

- L'[i] stores character of i-th run in BWT
- build wavelet tree for L'

Given a text *T* of length *n* over an alphabet Σ and its *BWT*, the *r*-index of this text consists of the following data structures \blacksquare

Array I

I[i] stores position of i-th run in BWT

Array L'

- L'[i] stores character of i-th run in BWT
- build wavelet tree for L'

Array R

- lengths of BWT runs stably sorted by runs' characters
- accumulate for each character by performing exclusive prefix sum over run lengths'

Given a text *T* of length *n* over an alphabet Σ and its *BWT*, the *r*-index of this text consists of the following data structures \blacksquare

Array I

I[i] stores position of i-th run in BWT

Array L'

- L'[i] stores character of i-th run in BWT
- build wavelet tree for L'

Array R

- lengths of BWT runs stably sorted by runs' characters
- accumulate for each character by performing exclusive prefix sum over run lengths'

Array C'

 C'[α] stores the start of the run lengths in R for each character α ∈ Σ starting at 0

Given a text *T* of length *n* over an alphabet Σ and its *BWT*, the *r*-index of this text consists of the following data structures \blacksquare

Array I

I[i] stores position of i-th run in BWT

Array L'

- L'[i] stores character of i-th run in BWT
- build wavelet tree for L'

Array R

- lengths of BWT runs stably sorted by runs' characters
- accumulate for each character by performing exclusive prefix sum over run lengths'

Array C'

 C'[α] stores the start of the run lengths in R for each character α ∈ Σ starting at 0

Bit Vector B

 compressed bit vector of length n containing ones at positions where BWT runs start and rank-support

Recap: The r-Index (2/3)

$rank_{\alpha}(BWT, i)$ with r-Index

- compute number *j* of run ($j = rank_1(B, i)$)
- compute position k in R ($k = C'[\alpha]$)
- compute number ℓ of α runs before the *j*-th run $(\ell = rank_{\alpha}(L', j-1))$
- compute number k of αs before the j-th run
 (k = R[k + ℓ])
- compute character β of run ($\beta = L'[j]$)
- if $\alpha \neq \beta$ return *k* () *i* is not in the run
- else return k + i I[j] + 1 is in the run

Recap: The r-Index (3/3)

Lemma: Space Requirements *r*-Index

Given a text *T* of length *n* over an alphabet of size σ that has *r BWT* runs, then its *r*-index requires

$O(r \lg n)$ bits

and can answer *rank*-queries on the *BWT* in $O(\lg \sigma)$. Given a pattern of length *m*, the *r*-index can answer pattern matching queries in time

 $\textit{O}(m \lg \sigma)$

RLBWT

- partition BWT into r substrings
- $BWT = L_1 L_2 \dots L_r$
- L_i is maximal repetition of same character
- $\ell_1 = 1$ and $\ell_i = \ell_{i-1} + |L_{i-1}|$
- $RLBWT = (L_1[1], \ell_1)(L_2[1], \ell_2) \dots (L_r[1], \ell_r)$

RLBWT

- partition BWT into r substrings
- $BWT = L_1 L_2 \dots L_r$
- L_i is maximal repetition of same character
- $\ell_1 = 1$ and $\ell_i = \ell_{i-1} + |L_{i-1}|$
- $RLBWT = (L_1[1], \ell_1)(L_2[1], \ell_2) \dots (L_r[1], \ell_r)$
- let δ be permutation of [1, r] such that

 $LF(\ell_{\delta[1]}) < LF(\ell_{\delta[2]}) < \cdots < LF(\ell_{\delta[r]})$

RLBWT

- partition BWT into r substrings
- $BWT = L_1 L_2 \dots L_r$
- L_i is maximal repetition of same character
- $\ell_1 = 1$ and $\ell_i = \ell_{i-1} + |L_{i-1}|$
- $RLBWT = (L_1[1], \ell_1)(L_2[1], \ell_2) \dots (L_r[1], \ell_r)$
- let δ be permutation of [1, r] such that

 $LF(\ell_{\delta[1]}) < LF(\ell_{\delta[2]}) < \cdots < LF(\ell_{\delta[r]})$

Lemma: LF and RLBWT

• Let $\ell_x < i < \ell_{x+1}$ for some $i \in [1, n]$, then

 $LF(i) = LF(\ell_x) + (i - \ell_x)$

$$LF(\ell_{\delta[i]}) = LF(\ell_{\delta[i-1]}) + |L_{\delta[i-1]}|$$

$$LF(\ell_{\delta[i]}) = LF(\ell_{\delta[i-1]}) + |L_{\delta[i-1]}|$$

T = aba	bc	ab	ca	bb	a\$									
BWT	а	b	\$	с	С	b	b	а	а	а	а	b	b	
	а	b	\$	c ²		b ²		a^4				b ²		
LF	2	7	1	12	13	8	9	3	4	5	6	10	11	

Input and Output Intervals

$\mathcal{T}=$ ababcabcabba\$

out	1 2	3 4	5 6	78	9	10 11	12 13
-----	-----	-----	-----	----	---	-------	-------

- there are *r* intervals
- represent domain of LF by intervals
- solve LF without predecessor queries () we did not use predecessor queries
- predecessor queries are bottleneck

Institute of Theoretical Informatics, Algorithm Engineering

Disjoint Interval Sequence & Move Query

Definition: Disjoint Interval Sequence

Let $I = (p_1, q_1), (p_2, q_2), \ldots, (p_k, q_k)$ be a sequence of *k* pairs of integers. We introduce a permutation π of [1, k] and sequence d_1, d_2, \ldots, d_k for *I*. π satisfies $q_{\pi[1]} \leq q_{\pi[2]} \leq \cdots \leq q_{\pi[k]}$, and $d_i = p_{i+1} - p_i$ for $i \in [1, k]$, where $p_{k+1} = n + 1$. We call the sequence *I* a disjoint interval sequence if it satisfies the following three conditions:

•
$$p_1 = 1 < p_2 < \cdots < p_k \le n$$

•
$$q_{\pi[1]} = 1$$
,

•
$$q_{\pi[i]} = q_{\pi[i-1]} + d_{\pi[i-1]}$$
 for each $i \in [2, k]$.

Disjoint Interval Sequence & Move Query

Definition: Disjoint Interval Sequence

Let $I = (p_1, q_1), (p_2, q_2), \ldots, (p_k, q_k)$ be a sequence of *k* pairs of integers. We introduce a permutation π of [1, k] and sequence d_1, d_2, \ldots, d_k for *I*. π satisfies $q_{\pi[1]} \leq q_{\pi[2]} \leq \cdots \leq q_{\pi[k]}$, and $d_i = p_{i+1} - p_i$ for $i \in [1, k]$, where $p_{k+1} = n + 1$. We call the sequence *I* a disjoint interval sequence if it satisfies the following three conditions:

•
$$p_1 = 1 < p_2 < \cdots < p_k \le n$$

•
$$q_{\pi[i]} = q_{\pi[i-1]} + d_{\pi[i-1]}$$
 for each $i \in [2, k]$.

T = aba	abcabca	abba\$		
in	1 2 3	4 5 6	7 8 9 10 11 12 13	
out	1 2 3	4 5 6	7 8 9 10 11 12 13	

Move Query

move(i, x) = (i', x')

- *i* position in input interval
- x input interval
- i' position in output interval
- x' input interval covering i'

Answering Move Query

- $D_{pair} = (p_i, q_i)$ for every interval
- D_{index}[i] index of input interval containing q_i

example on the board 💷

Answering Move Query

- $D_{pair} = (p_i, q_i)$ for every interval
- D_{index}[i] index of input interval containing q_i

example on the board 되

- *Move*(i, x) = (i', x')
 - *i* position in input sequence
 - x index of interval containing i

$$\bullet i' = q_x + (i - p_x)$$

- x' initially D_{index}[x]
- scan D_{pair} from x' until $p'_x \ge l'$
- x' index satisfying condition

Answering Move Query

- $D_{pair} = (p_i, q_i)$ for every interval
- D_{index}[i] index of input interval containing q_i

example on the board 되

Lemma: LF and RLBWT

• Let $\ell_x < i < \ell_{x+1}$ for some $i \in [1, n]$, then

 $LF(i) = LF(\ell_x) + (i - \ell_x)$

• $LF(\ell_{\delta[1]}) = 1$ and $LF(\ell_{\delta[i]}) = LF(\ell_{\delta[i-1]}) + |L_{\delta[i-1]}|$ • *Move*(i, x) = (i', x')

- *i* position in input sequence
- x index of interval containing i

$$\bullet i' = q_x + (i - p_x)$$

- x' initially D_{index}[x]
- scan D_{pair} from x' until $p'_x \ge l'$
- x' index satisfying condition

LF Query

- input: interval containing an integer i
- output: interval containing LF(i)

BWT	а	b	\$	с	С	b	b	а	а	а	а	b	b
	а	b	\$	c ²		b^2		a^4				b ²	
LF	2	7	1	12	13	8	9	3	4	5	6	10	11

out	1	2	3	4	5	6	7	8	9	10	11	12	13	
-----	---	---	---	---	---	---	---	---	---	----	----	----	----	--

LF Query

- input: interval containing an integer i
- output: interval containing LF(i)

BWT	а	b	\$	с	С	b	b	а	а	а	а	b	b
	а	b	\$	c ²		b^2		a^4				b ²	
LF	2	7	1	12	13	8	9	3	4	5	6	10	11

out 1	2	3	4	5	6	7	8	9	10	11	12	13	
-------	---	---	---	---	---	---	---	---	----	----	----	----	--

LF Query

- input: interval containing an integer i
- output: interval containing LF(i)
- 1. move to corresponding output interval

BWT	а	b	\$	с	с	b	b	а	а	а	а	b	b
	а	b	\$	c^2		b ²		a^4				b ²	
LF	2	7	1	12	13	8	9	3	4	5	6	10	11

LF Query

- input: interval containing an integer i
- output: interval containing LF(i)
- 1. move to corresponding output interval

LF Query

- input: interval containing an integer i
- output: interval containing LF(i)
- 1. move to corresponding output interval
- 2. move to input interval containing position j

LF Query

- input: interval containing an integer i
- output: interval containing LF(i)
- 1. move to corresponding output interval
- 2. move to input interval containing position j

LF Query

- input: interval containing an integer i
- output: interval containing LF(i)
- 1. move to corresponding output interval
- 2. move to input interval containing position j
- 3. linear search on at most four intervals

LF Query

- input: interval containing an integer i
- output: interval containing LF(i)
- 1. move to corresponding output interval
- 2. move to input interval containing position j
- 3. linear search on at most four intervals

LF Query

- input: interval containing an integer i
- output: interval containing LF(i)
- 1. move to corresponding output interval
- 2. move to input interval containing position j
- 3. linear search on at most four intervals

LF Query

- input: interval containing an integer i
- output: interval containing LF(i)
- 1. move to corresponding output interval
- 2. move to input interval containing position j
- 3. linear search on at most four intervals

worst-case intervals

T = ababcabcabba

Institute of Theoretical Informatics, Algorithm Engineering

LF Query

- input: interval containing an integer i
- output: interval containing LF(i)
- 1. move to corresponding output interval
- 2. move to input interval containing position j
- 3. linear search on at most four intervals
- worst-case intervals

balance intervals

Balance the Move Data Structure (1/2)

Definition: Permutation Graph

- each interval in the input and output sequence is a node
- each input interval [p_i, p_i + d_i 1] has a single outgoing edge pointing to output interval that contains p_i
- resulting graph G(I) has k edges
- G(1) is out-balanced if each output interval has at most three incoming edges

${\cal T}=$ ababcabcabba $\$$														
BWT	a	b	\$	с	с	b	b	a	a	a	а	b	b	
	а	b	\$	c ²		b ²		a^4				b ²		
LF	2	7	1	12	1	8	9	3	4	5	6	10	11	
in	1	2	3	4	5	6	7	8	9	10	11	12	13	
														
	-				-		-	_		10		10	12	
out	11	2	3	4	C	6	7	8	9	110	TT.	12	13	

Balance the Move Data Structure (1/2)

Definition: Permutation Graph

- each interval in the input and output sequence is a node
- each input interval [p_i, p_i + d_i 1] has a single outgoing edge pointing to output interval that contains p_i
- resulting graph G(I) has k edges
- G(1) is out-balanced if each output interval has at most three incoming edges

T = ababcabcabba

Karlsruhe Institute of Technology

Balance Move Data Structure (2/2)

- identify intervals with \geq 5 incoming edges
- split it "equally"
- each new interval covers at least two input intervals

Balance Move Data Structure (2/2)

- identify intervals with ≥ 5 incoming edges
- split it "equally"
- each new interval covers at least two input intervals
- number r' of balanced input intervals is k + r
- k is number of split operations
- r is number of runs in BWT

Balance Move Data Structure (2/2)

- identify intervals with \geq 5 incoming edges
- split it "equally"
- each new interval covers at least two input intervals
- number r' of balanced input intervals is k + r
- k is number of split operations
- r is number of runs in BWT

Lemma: Size of Out-Balanced Sequence

 $k \leq r$ and $r' \leq 2r$

Institute of Theoretical Informatics, Algorithm Engineering

Balance Move Data Structure (2/2)

- identify intervals with \geq 5 incoming edges
- split it "equally"
- each new interval covers at least two input intervals
- number r' of balanced input intervals is k + r
- k is number of split operations
- r is number of runs in BWT

Lemma: Size of Out-Balanced Sequence

 $k \leq r$ and $r' \leq 2r$

Proof

- output contains at least k big intervals, therefore $r' \ge 2k$
- r' = r + k, therefore $2k \le r + k$
- this gives us $k \leq r$

- r' balanced input & output intervals for LF queries
- rank & select data structure build on the BWT
 - rank in $O(\log \log_w \sigma)$ time
 - select in O(1) time

- r' balanced input & output intervals for LF queries
- rank & select data structure build on the BWT
 - rank in $O(\log \log_w \sigma)$ time
 - select in O(1) time
- O(r') = O(r) space
- $O(|P| \log \log_w \sigma)$ running time

- r' balanced input & output intervals for LF queries
- rank & select data structure build on the BWT
 - rank in $O(\log \log_w \sigma)$ time
 - select in O(1) time
- O(r') = O(r) space
- $O(|P| \log \log_w \sigma)$ running time
- $F(I_{LF})$: move data structure for *LF*
- L_{first}: character of each run
- R(L_{first}): rank and select support on L_{first}

- r' balanced input & output intervals for LF queries
- rank & select data structure build on the BWT
 - rank in $O(\log \log_w \sigma)$ time
 - select in O(1) time
- O(r') = O(r) space
- $O(|P| \log \log_w \sigma)$ running time
- F(I_{LF}): move data structure for LF
- L_{first}: character of each run
- R(L_{first}): rank and select support on L_{first}

- current interval is [b, e] for P[i + 1..m]
- look if P[i] occurs in [b, e]
 - $rank(L_{first}, c, j) rank(L_{first}) \ge 1$
- find b̂, ê marking first/last occurrence of P[i] in
 [b, e]
 - $\hat{b} = select(L_{first}, c, rank(L_{first}, c, i 1) + 1)$
 - $\hat{e} = select(L_{first}, c, rank(L_{first}, c, j))$
- use move data structure to find new b, e for P[i..m]

$\boldsymbol{\Phi}$ and Its Inverse

• use Φ^{-1} to compute *occs* of *SA*[*b*..*b* + *occ* - 1]

•
$$\Phi^{-1}(SA[i]) = SA[i+1]$$

•
$$SA[b..b + occ - 1] =$$

 $SA[b], \Phi^{-1}(SA[b]), \Phi^{-1}(\Phi^{-1}(SA[b])), \Phi^{-1}(\Phi^{-1}(\Phi^{-1}(SA[b]))), ...$

T = ababcabcabba\$BWT а b \$ С С b а al а b la bl b c^2 b² ia⁴ b² \$ а b LF 2 5 6 13 8 9 3 4 101 SA 13 12 9 6 3 2 10 8 7 4 Φ^{-1} 9 10 11 8 13 3 5 6 2 4 in 1 2 3 4 5 6 7 12 13 out 7 8 9 10 11 12 1

$\boldsymbol{\Phi}$ and Its Inverse

- use Φ^{-1} to compute *occ*s of *SA*[*b*..*b* + *occ* 1]
- $\Phi^{-1}(SA[i]) = SA[i+1]$
- SA[b..b + occ 1] = $SA[b], \Phi^{-1}(SA[b]), \Phi^{-1}(\Phi^{-1}(SA[b])), \Phi^{-1}(\Phi^{-1}(\Phi^{-1}(SA[b]))), ...$
- Φ⁻¹ can be represented by *r* input & output intervals [GNP20]
- use move data structure on balanced intervals
- keep track of SA[b]

$\mathcal{T}=ababcabcabba$															
E	BWT	a	b	\$	С	С	b	b	а	а	а	а	b	b	
		а	b	\$	c ²		b ²		a^4						
	LF	2	7	1	12	13	8	9	3	4	5	6	10	11	
	SA	13	12	1	9	6	3	11	2	10	7	4	8	5	
(Φ^{-1}	9	10	11	8	13	3	4	5	6	7	2	1	12	
	in	1	2	3	4	5	6	7	8	9	10	11	12	13	
			2	5	+	5	0	/	0	3	10	11	12	1.2	

Karlsruhe Institute of Technology

Conclusion and Outlook

This Lecture

- move data structure
- optimal O(r) space full-text index

Conclusion and Outlook

This Lecture

- move data structure
- optimal O(r) space full-text index

Next Lecture

- Iongest common extension queries
- BIG Recap

Linear Time Construction ST SA WT LΖ BWT LCP FM-Index *r*-Index

Conclusion and Outlook

This Lecture

- move data structure
- optimal O(r) space full-text index

Next Lecture

- Iongest common extension queries
- BIG Recap

Project

- "RESULT" is a string literal in the output
- SA/LCP can be discarded, tests would be appreciated

Linear Time Construction ST SA WT LΖ LCP BWT FM-Index r-Index

Bibliography I

- [GNP20] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. "Fully Functional Suffix Trees and Optimal Text Searching in BWT-Runs Bounded Space". In: *J. ACM* 67.1 (2020), 2:1–2:54. DOI: 10.1145/3375890.
- [NT21] Takaaki Nishimoto and Yasuo Tabei. "Optimal-Time Queries on BWT-Runs Compressed Indexes". In: ICALP. Volume 198. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 101:1–101:15. DOI: 10.4230/LIPIcs.ICALP.2021.101.