Text Indexing

Lecture 06: Burrows-Wheeler Transform

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License ©(1)(0): www.creativecommons.org/licenses/by-sa/4.0 | commit 0cd47f0 compiled at 2023-11-26-21:54

PINGO

https://pingo.scc.kit.edu/886630

Recap: Text-Compression

Definition: LZ77 Factorization [ZL77]

Given a text T of length n over an alphabet Σ, the LZ77 factorization is

- a set of z factors $f_{1}, f_{2}, \ldots, f_{z} \in \Sigma^{+}$, such that
- $T=f_{1} f_{2} \ldots f_{z}$ and for all $i \in[1, z] f_{i}$ is
- single character not occurring in $f_{1} \ldots f_{i-1}$ or
- longest substring occurring ≥ 2 times in $f_{1} \ldots f_{i}$
$T=$ abababbbbaba\$
- $f_{1}=a$
- $f_{4}=\mathrm{bbb}$
- $f_{2}=b$
- $f_{5}=\mathrm{aba}$
- $f_{3}=a b a b$
- $f_{6}=\$$

Definition: LZ78 Factorization [ZL78]

Given a text T of length n over an alphabet Σ, the LZ78 factorization is

- a set of z factors $f_{1}, f_{2}, \ldots, f_{z} \in \Sigma^{+}$, such that
- $T=f_{1} f_{2} \ldots f_{z}, f_{0}=\epsilon$ and for all $i \in[1, z]$
- if $f_{1} \ldots f_{i-1}=T[1 . . j-1]$, then f_{i} is the longest prefix of $T[j . . n]$, such that

$$
\exists k \in[0, i), \alpha \in \Sigma \cup\{\$\}: f_{k}=f_{i} \alpha
$$

```
\(T=\) abababbbbaba\$
```

- $f_{1}=a$
- $f_{4}=\mathrm{abb}$
- $f_{7}=\$$

```
- \(f_{2}=\mathrm{b}\)
- \(f_{5}=\mathrm{bb}\)
- \(f_{3}=a b\)
- \(f_{6}=\mathrm{aba}\)
```


Burrows-Wheeler Transform [BW94] (1/2)

Definition: Burrows-Wheeler Transform

Given a text T of length n and its suffix array $S A$, for $i \in[1, n]$ the Burrows-Wheeler transform is

$$
B W T[i]= \begin{cases}T[S A[i]-1] & S A[i]>1 \\ \$ & S A[i]=1\end{cases}
$$

Burrows-Wheeler Transform [BW94] (1/2)

Definition: Burrows-Wheeler Transform

Given a text T of length n and its suffix array $S A$, for $i \in[1, n]$ the Burrows-Wheeler transform is

$$
B W T[i]= \begin{cases}T[S A[i]-1] & S A[i]>1 \\ \$ & S A[i]=1\end{cases}
$$

	1	2	3	4	5	6	7	8	9	10	11	12	13
T	a	b	a	b	c	a	b	c	a	b	b	a	$\$$
$S A$	13	12	1	9	6	3	11	2	10	7	4	8	5
$L C P$	0	0	1	2	2	5	0	2	1	1	4	0	3
$B W T$	a	b	$\$$	c	c	b	b	a	a	a	a	b	b

Burrows-Wheeler Transform [BW94] (1/2)

Definition: Burrows-Wheeler Transform

Given a text T of length n and its suffix array $S A$, for $i \in[1, n]$ the Burrows-Wheeler transform is

$$
B W T[i]= \begin{cases}T[S A[i]-1] & S A[i]>1 \\ \$ & S A[i]=1\end{cases}
$$

	1	2	3	4	5	6	7	8	9	10	11	12	13
T	a	b	a	b	c	a	b	c	a	b	b	a	$\$$
$S A$	13	12	1	9	6	3	11	2	10	7	4	8	5
LCP	0	0	1	2	2	5	0	2	1	1	4	0	3
BWT	a	b	$\$$	c	c	b	b	a	a	a	a	b	b

- character before the suffix in SA-order
- choose characters cyclic (i) \$ for first suffix

Burrows-Wheeler Transform [BW94] (1/2)

Definition: Burrows-Wheeler Transform

Given a text T of length n and its suffix array $S A$, for $i \in[1, n]$ the Burrows-Wheeler transform is

$$
B W T[i]= \begin{cases}T[S A[i]-1] & S A[i]>1 \\ \$ & S A[i]=1\end{cases}
$$

	1	2	3	4	5	6	7	8	9	10	11	12	13
T	a	b	a	b	c	a	b	c	a	b	b	a	$\$$
$S A$	13	12	1	9	6	3	11	2	10	7	4	8	5
LCP	0	0	1	2	2	5	0	2	1	1	4	0	3
$B W T$	a	b	$\$$	c	c	b	b	a	a	a	a	b	b

- character before the suffix in SA-order
- choose characters cyclic (i) \$ for first suffix
- can compute BWT in $O(n)$ time
- for binary alphabet $O(n / \sqrt{\lg n})$ time and $O(n / \lg n)$ words space is possible [KK19

Burrows-Wheeler Transform [BW94] (1/2)

Definition: Burrows-Wheeler Transform

Given a text T of length n and its suffix array $S A$, for $i \in[1, n]$ the Burrows-Wheeler transform is

$$
B W T[i]= \begin{cases}T[S A[i]-1] & S A[i]>1 \\ \$ & S A[i]=1\end{cases}
$$

- character before the suffix in SA-order
- choose characters cyclic (i) \$ for first suffix
- can compute BWT in $O(n)$ time
- for binary alphabet $O(n / \sqrt{\lg n})$ time and $O(n / \lg n)$ words space is possible [KK19

Burrows-Wheeler Transform [BW94] (1/2)

Definition: Burrows-Wheeler Transform

Given a text T of length n and its suffix array $S A$, for $i \in[1, n]$ the Burrows-Wheeler transform is

$$
B W T[i]= \begin{cases}T[S A[i]-1] & S A[i]>1 \\ \$ & S A[i]=1\end{cases}
$$

- character before the suffix in SA-order
- choose characters cyclic (i) \$ for first suffix
- can compute BWT in $O(n)$ time
- for binary alphabet $O(n / \sqrt{\lg n})$ time and $O(n / \lg n)$ words space is possible [KK19

	1	2	3	4	5	6	7	8	9	10	11	12	13
T	a	b	a	b	c	a	b	c	a	b	b	a	$\$$
$S A$	13	12	1	9	6	3	11	2	10	7	4	8	5
LCP	0	0	1	2	2	5	0	2	1	1	4	0	3
$B W T$	a	b	$\$$	c	c	b	b	a	a	a	a	b	b

- definition is not very descriptive
- easy way to compute BWT
- what can we do with the BWT

PINGO can the BWT be reversed?

Burrows-Wheeler Transform (2/2)

Definition: Cyclic Rotation

Given a text T of length n, the i-th cyclic rotation is

$$
T^{(i)}=T[i . . n] T[1 . . i)
$$

- i-th cyclic rotation is concatenation of i-th suffix and ($i-1$)-th prefix
$T=a b a b c a b c a b b a \$$

$T^{(1)} T^{(2)} T^{(3)} T^{(4)} T^{(5)} T^{(6)} T^{(7)} T^{(8)} T^{(9)} T^{(10)} T^{(11)} T^{(12)} T^{(13)}$												
a	b	a	b	c	a	b	c	a	b	b	a	$\$$
b	a	b	c	a	b	c	a	b	b	a	$\$$	a
a	b	c	a	b	c	a	b	b	a	$\$$	a	b
b	c	a	b	c	a	b	b	a	$\$$	a	b	a
c	a	b	c	a	b	b	a	$\$$	a	b	a	b
a	b	c	a	b	b	a	\$	a	b	a	b	c
b	c	a	b	b	a	\$	a	b	a	b	c	a
c	a	b	b	a	$\$$	a	b	a	b	c	a	b
a	b	b	a	\$	a	b	a	b	c	a	b	c
b	b	a	\$	a	b	a	b	c	a	b	c	a
b	a	$\$$	a	b	a	b	c	a	b	c	a	b
a	$\$$	a	b	a	b	c	a	b	c	a	b	b
\$	a	b	a	b	c	a	b	c	a	b	b	a

Burrows-Wheeler Transform (2/2)

Definition: Cyclic Rotation

Given a text T of length n, the i-th cyclic rotation is

$$
T^{(i)}=T[i . . n] T[1 . . i)
$$

- i-th cyclic rotation is concatenation of i-th suffix and ($i-1$)-th prefix

Definition: Burrows-Wheeler Transform (alt.)

Given a text T and a matrix containing all its cyclic rotations in lexicographical order as columns, then the Burrows-Wheeler transform of the text is the last row of the matrix
$T=$ ababcabcabba\$
$T^{(1)} T^{(2)} T^{(3)} T^{(4)} T^{(5)} T^{(6)} T^{(7)} T^{(8)} T^{(9)} T^{(10)_{T}}{ }^{(11)_{T}(12)} T^{(13)}$

a	b	a	b	c	a	b	c	a	b	b	a	\$
b	a	b	c	a	b	c	a	b	b	a	$\$$	a
a	b	c	a	b	c	a	b	b	a	\$	a	b
b	c	a	b	c	a	b	b	a	$\$$	a	b	a
c	a	b	c	a	b	b	a	$\$$	a	b	a	b
a	b	c	a	b	b	a	\$	a	b	a	b	c
b	c	a	b	b	a	\$	a	b	a	b	c	a
c	a	b	b	a	\$	a	b	a	b	c	a	b
a	b	b	a	\$	a	b	a	b	c	a	b	c
b	b	a	$\$$	a	b	a	b	c	a	b	c	a
b	a	\$	a	b	a	b	c	a	b	c	a	b
a	\$	a	b	a	b	c	a	b	c	a	b	b
\$	a	b	a	b	c	a	b	c	a	b	b	a

Burrows-Wheeler Transform (2/2)

Definition: Cyclic Rotation

Given a text T of length n, the i-th cyclic rotation is

$$
T^{(i)}=T[i . . n] T[1 . . i)
$$

- i-th cyclic rotation is concatenation of i-th suffix and ($i-1$)-th prefix

Definition: Burrows-Wheeler Transform (alt.)

Given a text T and a matrix containing all its cyclic rotations in lexicographical order as columns, then the Burrows-Wheeler transform of the text is the last row of the matrix

$T=a b a b c a b c a b b a \$$

$$
T^{(13)} T^{(12)} T^{(1)} T^{(9)} T^{(6)} T^{(3)} T^{(11)} T^{(2)} T^{(10)} T^{(7)} T^{(4)} T^{(8)} T^{(5)}
$$

\$	a	a	a	a	a	b	b	b	b	b	c	c
a	\$	b	b	b	b	a	a	b	c	c	a	a
b	a	a	b	c	c	\$	b	a	a	a	b	b
a	b	b	a	a	a	a	c	\$	b	b	b	c
b	a	c	\$	b	b	b	a	a	b	c	a	a
c	b	a	a	b	c	a	b	b	a	a	\$	b
a	c	b	b	a	a	b	c	a	\$	b	a	b
b	a	c	a	\$	b	c	a	b	a	b	b	a
c	b	a	b	a	b	a	b	c	b	a	a	\$
a	c	b	c	b	a	b	b	a	a	\$	b	a
b	a	b	a	a	\$	c	a	b	b	a	c	b
b	b	a	b	b	a	a	\$	c	c	b	a	a
a	b	\$	c	c	b	b	a	a	a	a	b	b

Burrows-Wheeler Transform (2/2)

Definition: Cyclic Rotation

Given a text T of length n, the i-th cyclic rotation is

$$
T^{(i)}=T[i . . n] T[1 . . i)
$$

- i-th cyclic rotation is concatenation of i-th suffix and ($i-1$)-th prefix

Definition: Burrows-Wheeler Transform (alt.)

Given a text T and a matrix containing all its cyclic rotations in lexicographical order as columns, then the Burrows-Wheeler transform of the text is the last row of the matrix

$T=a b a b c a b c a b b a \$$

$$
T^{(13)} T^{(12)} T^{(1)} T^{(9)} T^{(6)} T^{(3)} T^{(11)} T^{(2)} T^{(10)} T^{(7)} T^{(4)} T^{(8)} T^{(5)}
$$

\$	a	a	a	a	a	b	b	b	b	b	c	c
a	\$	b	b	b	b	a	a	b	c	c	a	a
b	a	a	b	c	c	\$	b	a	a	a	b	b
a	b	b	a	a	a	a	c	\$	b	b	b	c
b	a	c	\$	b	b	b	a	a	b	c	a	a
c	b	a	a	b	c	a	b	b	a	a	\$	b
a	c	b	b	a	a	b	c	a	\$	b	a	b
b	a	c	a	\$	b	c	a	b	a	b	b	a
c	b	a	b	a	b	a	b	c	b	a	a	\$
a	c	b	c	b	a	b	b	a	a	\$	b	a
b	a	b	a	a	\$	c	a	b	b	a	c	b
b	b	a	b	b	a	a	\$	c	c	b	a	a
a	b	$\$$	c	c	b	b	a	a	a	a	b	b

- two important rows in the matrix
- other rows are not needed at all
- there is a special relation between the two rows (i) later this lecture

First Row F

- contains all characters or the text in sorted order

Last Row L

- is the BWT itself

$T=$ ababcabcabba\$

	$T^{(13)} T^{(12)} T^{(1)} T^{(9)} T^{(6)} T^{(3)} T^{(11)} T^{(2)} T^{(10)} T^{(7)} T^{(4)} T^{(8)} T^{(5)}$												
F	\$	a	a	a	a	a	b	b	b	b	b	C	C
	a	\$	b	b	b	b	a	a	b	c	C	a	a
	b	a	a	b	c	c	\$	b	a	a	a	b	b
	a	b	b	a	a	a	a	c	\$	b	b	b	c
	b	a	C	\$	b	b	b	a	a	b	C	a	a
	C	b	a	a	b	C	a	b	b	a	a	\$	b
	a	C	b	b	a	a	b	C	a	\$	b	a	b
	b	a	C	a	\$	b	c	a	b	a	b	b	a
	c	b	a	b	a	b	a	b	C	b	a	a	\$
	a	C	b	C	b	a	b	b	a	a	\$	b	a
	b	a	b	a	a	\$	C	a	b	b	a	C	b
	b	b	a	b	b	a	a	\$	C	C	b	a	a
L	a	b	\$	C	C	b	b	a	a	a	a	b	b

Properties of the BWT: Rank of Characters

Definition: Rank

Given a text T over an alphabet Sigma, the rank of a character at position $i \in[1, n]$ is

$$
\operatorname{rank}(i)=|\{j \in[1, i]: T[i]=T[j]\}|
$$

- rank is number of same characters that occur before in the text
- mark ranks of characters w.r.t. text not BWT

$$
T=\text { ababcabcabba\$ }
$$

	$T^{(13)} T^{(12)} T^{(1)} T^{(9)} T^{(6)} T^{(3)} T^{(11)} T^{(2)} T^{(10)} T^{(7)} T^{(4)} T^{(8)} T^{(5)}$												
F	\$	a	a	a	a	a	b	b	b	b	b	C	C
	a	\$	b	b	b	b	a	a	b	C	C	a	a
	b	a	a	b	c	C	\$	b	a	a	a	b	b
	a	b	b	a	a	a	a	C	\$	b	b	b	C
	b	a	C	\$	b	b	b	a	a	b	C	a	a
	C	b	a	a	b	C	a	b	b	a	a	\$	b
	a	C	b	b	a	a	b	C	a	\$	b	a	b
	b	a	C	a	\$	b	C	a	b	a	b	b	a
	C	b	a	b	a	b	a	b	C	b	a	a	\$
	a	C	b	C	b	a	b	b	a	a	\$	b	a
	b	a	b	a	a	\$	C	a	b	b	a	C	b
	b	b	a	b	b	a	a	\$	C	C	b	a	a
L	a	b	\$	c	C	b	b	a	a	a	a	b	b

Properties of the BWT: Rank of Characters

Definition: Rank

Given a text T over an alphabet Sigma, the rank of a character at position $i \in[1, n]$ is

$$
\operatorname{rank}(i)=|\{j \in[1, i]: T[i]=T[j]\}|
$$

- rank is number of same characters that occur before in the text
- mark ranks of characters w.r.t. text not BWT

$$
\begin{array}{cccccccccccccccc}
T & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{a} & \$ \\
\operatorname{rank} & 1 & 1 & 2 & 2 & 1 & 3 & 3 & 2 & 4 & 4 & 5 & 5 & 1
\end{array}
$$

$T=$ ababcabcabba\$

	$T^{(13)} T^{(12)} T^{(1)} T^{(9)} T^{(6)} T^{(3)} T^{(11)} T^{(2)} T^{(10)} T^{(7)} T^{(4)} T^{(8)} T^{(5)}$												
F	\$	a	a	a	a	a	b	b	b	b	b	C	C
	a	\$	b	b	b	b	a	a	b	C	C	a	a
	b	a	a	b	c	C	\$	b	a	a	a	b	b
	a	b	b	a	a	a	a	c	\$	b	b	b	C
	b	a	C	\$	b	b	b	a	a	b	c	a	a
	C	b	a	a	b	C	a	b	b	a	a	\$	b
	a	c	b	b	a	a	b	c	a	\$	b	a	b
	b	a	C	a	\$	b	C	a	b	a	b	b	a
	C	b	a	b	a	b	a	b	c	b	a	a	\$
	a	C	b	C	b	a	b	b	a	a	\$	b	a
	b	a	b	a	a	\$	C	a	b	b	a	C	b
	b	b	a	b	b	a	a	\$	c	C	b	a	a
L	a	b	\$	C	c	b	b	a	a	a	a	b	b

Properties of the BWT: Rank of Characters

Definition: Rank

Given a text T over an alphabet Sigma, the rank of a character at position $i \in[1, n]$ is

$$
\operatorname{rank}(i)=|\{j \in[1, i]: T[i]=T[j]\}|
$$

- rank is number of same characters that occur before in the text
- mark ranks of characters w.r.t. text not BWT

$$
\begin{array}{cccccccccccccccc}
T & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{a} & \$ \\
\operatorname{rank} & 1 & 1 & 2 & 2 & 1 & 3 & 3 & 2 & 4 & 4 & 5 & 5 & 1
\end{array}
$$

$T=a b a b c a b c a b b a \$$

$\mathrm{F} \quad \begin{aligned} & T^{(13)_{T}{ }^{(12)} T^{(1)}} T^{(9)} T^{(6)} T^{(3)} T^{(11)} T^{(2)} T^{(10)} T^{(7)} T^{(4)} T^{(8)} T^{(5)} \\ & \$ 1 \\ & \text { a }\end{aligned}$													
	b	a	a	b	C	C	\$	b	a	a	a	b	b
	a	b	b	a	a	a	a	C	\$	b	b	b	C
	b	a	C	\$	b	b	b	a	a	b	c	a	a
	c	b	a	a	b	c	a	b	b	a	a	\$	b
	a	C	b	b	a	a	b	c	a	\$	b	a	b
	b	a	C	a	\$	b	c	a	b	a	b	b	a
	C	b	a	b	a	b	a	b	C	b	a	a	\$
	a	C	b	C	b	a	b	b	a	a	\$	b	a
	b	a	b	a	a	\$	C	a	b	b	a	C	b
	b	b	a	b	b	a	a	\$	C	C	b	a	a
L	a	b	\$	C	C	b	b	a	a	a	a	b	b

Properties of the BWT: Rank of Characters

Definition: Rank

Given a text T over an alphabet Sigma, the rank of a character at position $i \in[1, n]$ is

$$
\operatorname{rank}(i)=|\{j \in[1, i]: T[i]=T[j]\}|
$$

- rank is number of same characters that occur before in the text
- mark ranks of characters w.r.t. text not BWT

T	a	b	a	b	c	a	b	c	a	b	b	a	$\$$
rank	1	1	2	2	1	3	3	2	4	4	5	5	1

$T=a b a b c a b c a b b a \$$

$$
\begin{aligned}
& T^{(13)} T^{(12)} T^{(1)} T^{(9)} T^{(6)} T^{(3)} T^{(11)} T^{(2)} T^{(10)} T^{(7)} T^{(4)} T^{(8)} T^{(5)} \\
& \text { F }
\end{aligned}
$$

Properties of the BWT: Rank of Characters

Definition: Rank

Given a text T over an alphabet Sigma, the rank of a character at position $i \in[1, n]$ is

$$
\operatorname{rank}(i)=|\{j \in[1, i]: T[i]=T[j]\}|
$$

- rank is number of same characters that occur before in the text
- mark ranks of characters w.r.t. text not BWT

T	a	b	a	b	c	a	b	c	a	b	b	a	$\$$
rank	1	1	2	2	1	3	3	2	4	4	5	5	1

$T=a b a b c a b c a b b a \$$

Properties of the BWT: Rank of Characters

Definition: Rank

Given a text T over an alphabet Sigma, the rank of a character at position $i \in[1, n]$ is

$$
\operatorname{rank}(i)=|\{j \in[1, i]: T[i]=T[j]\}|
$$

- rank is number of same characters that occur before in the text
- mark ranks of characters w.r.t. text not BWT
- order of ranks is the same in first and last row

$T=a b a b c a b c a b b a \$$
$T^{(13)} T^{(12)} T^{(1)} T^{(9)} T^{(6)} T^{(3)} T^{(11)} T^{(2)} T^{(10)} T^{(7)} T^{(4)} T^{(8)} T^{(5)}$
F

$L \quad 5,5,1,2,1,1,4,3-3$

LF-Mapping (1/2)

- want to map characters from last to first row
- why do we want this?
- helps with pattern matching
- transform BWT back to T

Definition: LF-mapping

Given a text T of length n and its suffix array $S A$, then the $L F$-mapping is a permutation of $[1, n]$, such that

$$
L F(i)=j \Longleftrightarrow S A[j]=S A[i]-1
$$

- similar to definition of BWT
- requires $S A$ or explicitly saving $L F$-mapping

$T=a b a b c a b c a b b a \$$

F	$T^{(13)} T^{(12)} T^{(1)} T^{(9)} T^{(6)} T^{(3)} T^{(11)} T^{(2)} T^{(10)} T^{(7)} T^{(4)} T^{(8)} T^{(5)}$												
	\$	a	a	a	a	a	b	b	b	b	b	C	C
	a	\$	b	b	b	b	a	a	b	C	C	a	a
	b	a	a	b	C	C	\$	b	a	a	a	b	b
	a	b	b	a	a	a	a	C	\$	b	b	b	C
	b	a	C	\$	b	b	b	a	a	b	C	a	a
	C	b	a	a	b	C	a	b	b	a	a	\$	b
	a	C	b	b	a	a	b	C	a	\$	b	a	b
	b	a	C	a	\$	b	C	a	b	a	b	b	a
	C	b	a	b	a	b	a	b	C	b	a	a	\$
	a	C	b	C	b	a	b	b	a	a	\$	b	a
	b	a	b	a	a	\$	C	a	b	b	a	C	b
	b	b	a	b	b	a	a	\$	C	C	b	a	a
L	a	b	\$	c	C	b	b	a	a	a	a	b	b

LF-Mapping (1/2)

- want to map characters from last to first row
- why do we want this?
- helps with pattern matching
- transform BWT back to T

Definition: LF-mapping

Given a text T of length n and its suffix array $S A$, then the $L F$-mapping is a permutation of $[1, n]$, such that

$$
L F(i)=j \Longleftrightarrow S A[j]=S A[i]-1
$$

- similar to definition of BWT
- requires $S A$ or explicitly saving $L F$-mapping

$T=a b a b c a b c a b b a \$$

F	$T^{(13)} T^{(12)} T^{(1)} T^{(9)} T^{(6)} T^{(3)} T^{(11)} T^{(2)} T^{(10)} T^{(7)} T^{(4)} T^{(8)} T^{(5)}$												
	\$	a	a	a	a	a	b	b	b	b	b	C	C
	a	4	b	b	b	b	a	a	b	C	C	a	a
	b	a	a	b	C	C	\$	b	a	a	a	b	b
	a	b	b	a	a	a	a	c	\$	b	b	b	C
	b	a	C	\$	b	b	b	a	a	b	C	a	a
	C	b	a	a	b	C	a	b	b	a	a	\$	b
	a	C	b	b	a	a	b	C	a	\$	b	a	b
	b	a	C	a	\$	b	C	a	b	a	b	b	a
	C	b	a	b	a	b	a	b	C	b	a	a	\$
	a	c	b	C	b	a	b	b	a	a	\$	b	a
	b	a	b	a	a	\$	C	a	b	b	a	C	b
	1	b	a	b	b	a	a	\$	C	C	b	a	a
L	a	b	\$	C	C	b	b	a	a	a	a	b	b

LF-Mapping (1/2)

- want to map characters from last to first row
- why do we want this?
- helps with pattern matching
- transform BWT back to T

Definition: LF-mapping

Given a text T of length n and its suffix array $S A$, then the $L F$-mapping is a permutation of $[1, n]$, such that

$$
L F(i)=j \Longleftrightarrow S A[j]=S A[i]-1
$$

- similar to definition of BWT
- requires $S A$ or explicitly saving $L F$-mapping

$T=$ ababcabcabba\$

L

$T^{(13)} T^{(12)} T^{(1)} T^{(9)} T^{(6)} T^{(3)} T^{(11)} T^{(2)} T^{(10)} T^{(7)} T^{(4)} T^{(8)} T^{(5)}$												
\$	a	a	a	a	a	b	b	b	b	b	C	C
a	4	b	b	b			a	b	C	C	a	a
b	a	a	b	C	\%	\$	b	a	a	a	b	b
a	b	b	a	a	a	a	C	\$	b	b	b	C
b	a	C	\$	b/	b	b	a	a	b	C	a	a
C	b	a	a	β	C	a	b	b	a	a	\$	b
a	C	b		a	a	b	C	a	\$	b	a	b
b	a	C	7	\$	b	C	a	b	a	b	b	a
C	b	a	b	a	b	a	b	C	b	a	a	\$
a	C	b/	C	b	a	b	b	a	a	\$	b	a
b	a	0	a	a	\$	C	a	b	b	a	C	b
1	b	a	b	b	a	a	\$	C	C	b	a	a
a	b	\$	C	C	b	b	a	a	a	a	b	b

LF-Mapping (1/2)

- want to map characters from last to first row
- why do we want this?
- helps with pattern matching
- transform BWT back to T

Definition: LF-mapping

Given a text T of length n and its suffix array $S A$, then the $L F$-mapping is a permutation of $[1, n]$, such that

$$
L F(i)=j \Longleftrightarrow S A[j]=S A[i]-1
$$

- similar to definition of BWT
- requires $S A$ or explicitly saving $L F$-mapping

$T=$ ababcabcabba\$

F	$T^{(13)} T^{(12)} T^{(1)} T^{(9)} T^{(6)} T^{(3)} T^{(11)} T^{(2)} T^{(10)} T^{(7)} T^{(4)} T^{(8)} T^{(5)}$												
	\$	a	a	a	a	a	b	b	b	b	b	C	C
	t	4	b	b	b	b		a	b	C	C	a	a
	b	a	a	b	C	δ	\$	b	a	a	a	b	b
	a	b	b	a	a	a	a	C	\$	b	b	b	C
	b	a	C	\$	b	b	b	a	a	b	C	a	a
	C	a	a	a	β	C	a	b	b	a	a	\$	b
	a	¢	b	b	a	a	b	C	a	\$	b	a	b
	b	d	c	7	\$	b	C	a	b	a	b	b	a
	C	b	a	b	a	b	a	b	C	b	a	a	\$
	a	C	b/	c	b	a	b	b	a	a	\$	b	a
	b	a	0	a	a	\$	C	a	b	b	a	C	b
	1	b/		b	b	a	a	\$	C	C	b	a	a
	a	b	\$	C	C	b	b	a	a	a	a	b	b

LF-Mapping (1/2)

- want to map characters from last to first row
- why do we want this?
- helps with pattern matching
- transform BWT back to T

Definition: LF-mapping

Given a text T of length n and its suffix array $S A$, then the $L F$-mapping is a permutation of $[1, n]$, such that

$$
L F(i)=j \Longleftrightarrow S A[j]=S A[i]-1
$$

- similar to definition of BWT
- requires $S A$ or explicitly saving $L F$-mapping

$T=$ ababcabcabba\$

L

$T^{(13)} T^{(12)} T^{(1)} T^{(9)} T^{(6)} T^{(3)} T^{(11)} T^{(2)} T^{(10)} T^{(7)} T^{(4)} T^{(8)} T^{(5)}$												
\$	a	a	a	a	a	b	b	b	b	b	C	C
-	4	b	b	b			a	b	C	C		a
b	a	a	b	C	8	\$	b	a	a	a		b
a	b	b	a	a	a	a	C	\$	b	-	b	C
b	a	C	\$		b	b	a	a		C	a	a
C	0	a	a	-	C	a	b			a	\$	b
a		b			a	b	C		\$	b	a	b
b	0	C	J	\$	b	C		b	a	b	b	a
C	b	a	10	a	b			C	b	a	a	\$
a	C	$\mathrm{b} /$	C	b	a		b	a	a	\$	b	a
b	a	0	a	a		C	a	b	b	a	C	b
1	b		b			a	\$	C	C	b	a	a
a	b	\$	C	C	b	b	a	a	a	a	b	b

LF-Mapping (1/2)

- want to map characters from last to first row
- why do we want this?
- helps with pattern matching
- transform BWT back to T

Definition: LF-mapping

Given a text T of length n and its suffix array $S A$, then the $L F$-mapping is a permutation of $[1, n]$, such that

$$
L F(i)=j \Longleftrightarrow S A[j]=S A[i]-1
$$

- similar to definition of BWT
- requires $S A$ or explicitly saving $L F$-mapping

$T=a b a b c a b c a b b a \$$

LF-Mapping (2/2)

Definition: C-Array and Rank-Function

Given a text T of length n over an alphabet Σ, $\alpha \in \Sigma$, and $i \in[1, n]$ then

$$
C[\alpha]=|i \in[1, n]: T[i]<\alpha|
$$

and

$$
\operatorname{rank}_{\alpha}(i)=|\{j \in[1, i]: T[j]=\alpha\}|
$$

- Contains total number of smaller characters
- rank k_{α} contains number of α 's in prefix $T[1 . . i]$
- rank ${ }_{\alpha}$ can be computed in $O(1)$ time [FM00]

LF-Mapping (2/2)

Definition: C-Array and Rank-Function

Given a text T of length n over an alphabet Σ, $\alpha \in \Sigma$, and $i \in[1, n]$ then

$$
C[\alpha]=|i \in[1, n]: T[i]<\alpha|
$$

and

$$
\operatorname{rank}_{\alpha}(i)=|\{j \in[1, i]: T[j]=\alpha\}|
$$

- C contains total number of smaller characters
- rank ${ }_{\alpha}$ contains number of α 's in prefix $T[1 . . i]$
- rank $_{\alpha}$ can be computed in $O(1)$ time [FM00]

```
        T a b a b c a b c a b b a $
rank 1 1 2 2 1 3 3 2 4 4 5 5 1
```

- rank now on BWT
- C is exclusive prefix sum over histogram

LF-Mapping (2/2)

Definition: C-Array and Rank-Function

Given a text T of length n over an alphabet Σ, $\alpha \in \Sigma$, and $i \in[1, n]$ then

$$
C[\alpha]=|i \in[1, n]: T[i]<\alpha|
$$

and

$$
\operatorname{rank}_{\alpha}(i)=|\{j \in[1, i]: T[j]=\alpha\}|
$$

- Contains total number of smaller characters
- rank ${ }_{\alpha}$ contains number of α 's in prefix $T[1 . . i]$
- rank ${ }_{\alpha}$ can be computed in $O(1)$ time [FM00]

```
        T a b a b c a b c a b b a $
rank 1 1 1 2 2 1 3 3 2 4 4 5 5 1
```

- rank now on BWT
- C is exclusive prefix sum over histogram

Definition: LF-Mapping (alt.)

Given a $B W T$, its C-array, and its rank-Function, then

$$
L F(i)=C[B W T[i]]+\operatorname{rank}_{B W T[i]}(i)
$$

Reversing the BWT (1/2)

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text

Reversing the BWT (1/2)

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text

Reversing the BWT (1/2)

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text

Reversing the BWT (1/2)

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text

$T=$ ababcabcabba\$

	\$	a	a	a	a	a	b	b	b	b	b	C	C
	a	\$	b	b	b	b	a	a	b	C	C	a	a
	b	a	a	b	C	C	\$	b	a	a	a	b	b
	a	b	b	a	a	a	a	c	\$	b	b	b	C
	b	a	C	\$	b	b	b	a	a	b	C	a	a
	C	b	a	a	b	C	a	b	b	a	a	\$	b
	a	C	b	b	a	a	b	c	a	\$	b	a	b
	b	a	C	a	\$	b	C	a	b	a	b	b	a
	C	b	a	b	a	b	a	b	C	b	a	a	\$
	a	C	b	C	b	a	b	b	a	a	\$	b	a
	b	a	b	a	a	\$	C	a	b	b	a	C	b
	b	b	a	b	b	a	a	\$	C	c	b	a	a
	a	b	\$	C	C	b	b	a	a	a	a	b	b
LF	2		1	12	13	8	9	3	4	5	6	10	11

Reversing the BWT (1/2)

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text

$T=$ ababcabcabba\$

Reversing the BWT (2/2)

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text

Reversing the BWT (2/2)

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text
- $T[n]=\$$ and $T^{(n)}$ in first row
- apply $L F$-mapping on result to obtain any character

$$
T[n-i]=L[\underbrace{L F(L F(\ldots}_{i-1 \text { times }} L F(1)) \ldots))]
$$

1	2	3	4	5	6	7	8	9	0		12	
a	b	\$	c	c	b	b	a	a	a	a	b	b
2	7	1	12	13	8	9	3	4	5	6	10	1

Reversing the BWT (2/2)

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text
- $T[n]=\$$ and $T^{(n)}$ in first row
- apply $L F$-mapping on result to obtain any character

$$
T[n-i]=L[\underbrace{L F(L F(\ldots}_{i-1 \text { times }} L F(1)) \ldots))]
$$

$T[13]=\$$ and $k=1$

Reversing the BWT (2/2)

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text
- $T[n]=\$$ and $T^{(n)}$ in first row
- apply $L F$-mapping on result to obtain any character

$$
T[n-i]=L[\underbrace{L F(L F(\ldots(}_{i-1 \text { times }} L F(1)) \ldots))]
$$

- $T[13]=\$$ and $k=1$
- $T[12]=L[1]=\mathrm{a}$ and $k=L F(1)=2$

Reversing the BWT (2/2)

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text
- $T[n]=\$$ and $T^{(n)}$ in first row
- apply $L F$-mapping on result to obtain any character

$$
T[n-i]=L[\underbrace{L F(L F(\ldots}_{i-1 \text { times }} L F(1)) \ldots))]
$$

- $T[13]=\$$ and $k=1$
- $T[12]=L[1]=\mathrm{a}$ and $k=L F(1)=2$
- $T[11]=L[2]=\mathrm{b}$ and $k=L F(2)=7$

Reversing the BWT (2/2)

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text
- $T[n]=\$$ and $T^{(n)}$ in first row
- apply $L F$-mapping on result to obtain any character

$$
T[n-i]=L[\underbrace{L F(L F(\ldots}_{i-1 \text { times }} L F(1)) \ldots))]
$$

	1	2	3	4	5	6	7	8	9	0	11	12	
L	a	b	\$	c	c	b	b	a	a	a	a	b	b
LF	2	7	1	12	13	8	9	3	4	5	6	10	11

- $T[13]=\$$ and $k=1$
- $T[12]=L[1]=\mathrm{a}$ and $k=L F(1)=2$
$T[11]=L[2]=\mathrm{b}$ and $k=L F(2)=7$
- $T[10]=L[7]=\mathrm{b}$ and $k=L F(7)=9$

Reversing the BWT (2/2)

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text
- $T[n]=\$$ and $T^{(n)}$ in first row
- apply $L F$-mapping on result to obtain any character

$$
T[n-i]=L[\underbrace{L F(L F(\ldots}_{i-1 \text { times }} L F(1)) \ldots))]
$$

	1	2	3	4	5	6	7	8	9	0	11	12	
L	a	b	\$	c	c	b	b	a	a	a	a	b	b
LF	2	7	1	12	13	8	9	3	4	5	6	10	11

- $T[13]=\$$ and $k=1$
- $T[12]=L[1]=\mathrm{a}$ and $k=L F(1)=2$
- $T[11]=L[2]=\mathrm{b}$ and $k=L F(2)=7$
- $T[10]=L[7]=\mathrm{b}$ and $k=L F(7)=9$
- $T[9]=L[9]=\mathrm{a}$ and $k=L F(9)=4$

Reversing the BWT (2/2)

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text
- $T[n]=\$$ and $T^{(n)}$ in first row
- apply $L F$-mapping on result to obtain any character

$$
T[n-i]=L[\underbrace{L F(L F(\ldots(L F(1)) \ldots))]}_{i-1 \text { times }}
$$

	1	2	3	4	5	,	7	8	9	0		12	
L	a	b	\$	C	C	b	b	a	a	a	a	b	b
LF	2	7	1	12	13	8	9	3	4	5	6	10	11

$T[13]=\$$ and $k=1$

- $T[12]=L[1]=\mathrm{a}$ and $k=L F(1)=2$
$T[11]=L[2]=\mathrm{b}$ and $k=L F(2)=7$
$T[10]=L[7]=\mathrm{b}$ and $k=L F(7)=9$
$T[9]=L[9]=\mathrm{a}$ and $k=L F(9)=4$
- $T[9]=L[4]=\mathrm{c}$ and $k=L F(4)=12$

Reversing the BWT (2/2)

- characters (w.r.t. text) preserve order in L and F
- LF-mapping returns previous character in text
- $T[n]=\$$ and $T^{(n)}$ in first row
- apply $L F$-mapping on result to obtain any character

$$
T[n-i]=L[\underbrace{L F(L F(\ldots(L F(1)) \ldots))]}_{i-1 \text { times }}
$$

	$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 11 & 12 & 13\end{array}$												
	a	b	\$	C	c	b	b	a	a	a	a	b	b
F	2	7	1	12	13	8	9	3	4	5	6	10	1

- $T[13]=\$$ and $k=1$
- $T[12]=L[1]=\mathrm{a}$ and $k=L F(1)=2$
- $T[11]=L[2]=\mathrm{b}$ and $k=L F(2)=7$
- $T[10]=L[7]=\mathrm{b}$ and $k=L F(7)=9$
$T[9]=L[9]=\mathrm{a}$ and $k=L F(9)=4$
- $T[9]=L[4]=\mathrm{c}$ and $k=L F(4)=12$

Properties of the BWT: Runs

- $B W T$ is reversible
- can be used for lossless compression

$\mathrm{L} \quad$| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a | b | $\$$ | c | c | b | b | a | a | a | a | b | b |

Definition: Run (simplified)

Given a text T of length n, we call its substring $T[i . . j]$ a run, if

- $T[k]=T[\ell]$ for all $k, \ell \in[i, j]$ and
- $T[i-1] \neq T[i]$ and $T[j+1] \neq T[j]$
(i) (To be more precise, this is a definition for a run of
a periodic substring with smallest period 1, but this is not important for this lecture

Properties of the BWT: Runs

- BWT is reversible
- can be used for lossless compression

Definition: Run (simplified)

Given a text T of length n, we call its substring $T[i . . j]$ a run, if

- $T[k]=T[\ell]$ for all $k, \ell \in[i, j]$ and
- $T[i-1] \neq T[i]$ and $T[j+1] \neq T[j]$
(i) (To be more precise, this is a definition for a run of a periodic substring with smallest period 1, but this is not important for this lecture

- BWT contains lots of runs
- same context is often grouped together

Compressing the BWT: Run-Length Compression

Definition: Run-Length Encoding

Given a text T, represent each run $T[i . . i+\ell)$ as tuple

$$
(T[i], \ell)
$$

$$
T=a b a b c a b c a b b a \$
$$

- $(a, 1)$
- $(b, 1)$
- $(\$, 1)$
- $(c, 2)$
- $(b, 2)$
- $(a, 4)$
- $(\mathrm{b}, 2)$

Compressing the BWT: Move-to-Front

Definition: Move-To-Front Encoding

Given a text T over an alphabet $\Sigma=[1, \sigma]$, the MTF encoding $\operatorname{MTF}(T)$ of the text is computed as follows

- start with a list $X=\Sigma[1], \Sigma[2], \ldots, \Sigma[\sigma]$
- scan text from left to right, for character $T[i]$
- append position of $T[i]$ in X to $\operatorname{MTF}(T)$ and
- move $T[i]$ to front of X
- MTF encoding can easily be reverted
- consists of many small numbers
- runs are preserved
- use Huffman on encoding (i) no theoretical improvement but good in practice

Compressing the BWT: Move-to-Front

Definition: Move-To-Front Encoding

Given a text T over an alphabet $\Sigma=[1, \sigma]$, the MTF encoding $\operatorname{MTF}(T)$ of the text is computed as follows

$T=a b a b c a b c a b b a \$$

- start with a list $X=\Sigma[1], \Sigma[2], \ldots, \Sigma[\sigma]$
- scan text from left to right, for character $T[i]$
- append position of $T[i]$ in X to $\operatorname{MTF}(T)$ and
- move $T[i]$ to front of X
- MTF encoding can easily be reverted
- consists of many small numbers
- runs are preserved
- use Huffman on encoding (i) no theoretical improvement but good in practice

Compressing the BWT: Move-to-Front

Definition: Move-To-Front Encoding

Given a text T over an alphabet $\Sigma=[1, \sigma]$, the MTF encoding $\operatorname{MTF}(T)$ of the text is computed as follows

- start with a list $X=\Sigma[1], \Sigma[2], \ldots, \Sigma[\sigma]$
- scan text from left to right, for character $T[i]$
- append position of $T[i]$ in X to $\operatorname{MTF}(T)$ and
- move $T[i]$ to front of X
- MTF encoding can easily be reverted
- consists of many small numbers
- runs are preserved
- use Huffman on encoding (i) no theoretical improvement but good in practice

$T=$ ababcabcabba\$

```
8N_}\begin{array}{c}{1}\\{\hline}
```

- $X=\$, a, b, c$

Compressing the BWT: Move-to-Front

Definition: Move-To-Front Encoding

Given a text T over an alphabet $\Sigma=[1, \sigma]$, the MTF encoding $\operatorname{MTF}(T)$ of the text is computed as follows

- start with a list $X=\Sigma[1], \Sigma[2], \ldots, \Sigma[\sigma]$
- scan text from left to right, for character $T[i]$
- append position of $T[i]$ in X to $\operatorname{MTF}(T)$ and
- move $T[i]$ to front of X
- MTF encoding can easily be reverted
- consists of many small numbers
- runs are preserved
- use Huffman on encoding (i) no theoretical improvement but good in practice
$T=a b a b c a b c a b b a \$$

$\mathbf{B W T}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 11 | 12 | 13 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a | b | $\$$ | c | c | b | b | a | a | a | a | b | b |

- $X=\$, \mathrm{a}, \mathrm{b}, \mathrm{c}$
- MTF $=2$ and $X=a, \$, b, c$

Compressing the BWT: Move-to-Front

Definition: Move-To-Front Encoding

Given a text T over an alphabet $\Sigma=[1, \sigma]$, the MTF encoding $\operatorname{MTF}(T)$ of the text is computed as follows

- start with a list $X=\Sigma[1], \Sigma[2], \ldots, \Sigma[\sigma]$
- scan text from left to right, for character $T[i]$
- append position of $T[i]$ in X to $\operatorname{MTF}(T)$ and
- move $T[i]$ to front of X
$T=$ ababcabcabba\$

$\mathbf{B W T}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 11 | 12 | 13 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a | b | $\$$ | c | c | b | b | a | a | a | a | b | b |

- $X=\$, \mathrm{a}, \mathrm{b}, \mathrm{c}$
- MTF $=2$ and $X=a, \$, b, c$
- MTF $=23$ and $X=\mathrm{b}, \mathrm{a}, \$, \mathrm{c}$
- MTF encoding can easily be reverted
- consists of many small numbers
- runs are preserved
- use Huffman on encoding (i) no theoretical improvement but good in practice

Compressing the BWT: Move-to-Front

Definition: Move-To-Front Encoding

Given a text T over an alphabet $\Sigma=[1, \sigma]$, the MTF encoding $\operatorname{MTF}(T)$ of the text is computed as follows

- start with a list $X=\Sigma[1], \Sigma[2], \ldots, \Sigma[\sigma]$
- scan text from left to right, for character $T[i]$
- append position of $T[i]$ in X to $\operatorname{MTF}(T)$ and
- move $T[i]$ to front of X
- MTF encoding can easily be reverted
- consists of many small numbers
- runs are preserved
- use Huffman on encoding (i) no theoretical improvement but good in practice
$T=a b a b c a b c a b b a \$$

$\mathbf{B W T}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 11 | 12 | 13 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a | b | $\$$ | c | c | b | b | a | a | a | a | b | b |

- $X=\$, \mathrm{a}, \mathrm{b}, \mathrm{c}$
- $M T F=2$ and $X=a, \$, b, c$
- MTF $=23$ and $X=\mathrm{b}, \mathrm{a}, \$, \mathrm{c}$
- MTF $=233$ and $X=\$, b, a, c$

Compressing the BWT: Move-to-Front

Definition: Move-To-Front Encoding

Given a text T over an alphabet $\Sigma=[1, \sigma]$, the MTF encoding $\operatorname{MTF}(T)$ of the text is computed as follows

- start with a list $X=\Sigma[1], \Sigma[2], \ldots, \Sigma[\sigma]$
- scan text from left to right, for character $T[i]$
- append position of $T[i]$ in X to $\operatorname{MTF}(T)$ and
- move $T[i]$ to front of X
- MTF encoding can easily be reverted
- consists of many small numbers
- runs are preserved
- use Huffman on encoding (i) no theoretical improvement but good in practice
$T=a b a b c a b c a b b a \$$

$\mathbf{B W T}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 11 | 12 | 13 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a | b | $\$$ | c | c | b | b | a | a | a | a | b | b |

- $X=\$, \mathrm{a}, \mathrm{b}, \mathrm{c}$
- $M T F=2$ and $X=a, \$, b, c$
- MTF $=23$ and $X=\mathrm{b}, \mathrm{a}, \$, \mathrm{c}$
- MTF $=233$ and $X=\$, b, a, c$
- MTF $=2334$ and $X=c, \$, b, a$

Compressing the BWT: Move-to-Front

Definition: Move-To-Front Encoding

Given a text T over an alphabet $\Sigma=[1, \sigma]$, the MTF encoding $\operatorname{MTF}(T)$ of the text is computed as follows

- start with a list $X=\Sigma[1], \Sigma[2], \ldots, \Sigma[\sigma]$
- scan text from left to right, for character $T[i]$
- append position of $T[i]$ in X to $\operatorname{MTF}(T)$ and
- move $T[i]$ to front of X
- MTF encoding can easily be reverted
- consists of many small numbers
- runs are preserved
- use Huffman on encoding (i) no theoretical improvement but good in practice
$T=a b a b c a b c a b b a \$$

- $X=\$, \mathrm{a}, \mathrm{b}, \mathrm{c}$
- $M T F=2$ and $X=a, \$, b, c$
- MTF $=23$ and $X=\mathrm{b}, \mathrm{a}, \$, \mathrm{c}$
- MTF $=233$ and $X=\$, b, a, c$
- MTF $=2334$ and $X=c, \$, b, a$
- $M T F=23341$ and $X=c, \$, b, a$

Compressing the BWT: Move-to-Front

Definition: Move-To-Front Encoding

Given a text T over an alphabet $\Sigma=[1, \sigma]$, the MTF encoding $\operatorname{MTF}(T)$ of the text is computed as follows

- start with a list $X=\Sigma[1], \Sigma[2], \ldots, \Sigma[\sigma]$
- scan text from left to right, for character $T[i]$
- append position of $T[i]$ in X to $\operatorname{MTF}(T)$ and
- move $T[i]$ to front of X
- MTF encoding can easily be reverted
- consists of many small numbers
- runs are preserved
- use Huffman on encoding (i) no theoretical improvement but good in practice
$T=a b a b c a b c a b b a \$$

	1			3	4	5	6	7	8	9	9	0	11	12		
BWT	a	b		\$	c	c	b	b	a	a	a	a	a	b	b	

- $X=\$, \mathrm{a}, \mathrm{b}, \mathrm{c}$
- $M T F=2$ and $X=a, \$, b, c$
- MTF $=23$ and $X=\mathrm{b}, \mathrm{a}, \$, \mathrm{c}$
- MTF $=233$ and $X=\$, b, a, c$
- MTF $=2334$ and $X=c, \$, b, a$
- MTF $=23341$ and $X=c, \$, b, a$
- MTF $=233411$ and $X=c, \$, b, a$

Compressing the BWT: Move-to-Front

Definition: Move-To-Front Encoding

Given a text T over an alphabet $\Sigma=[1, \sigma]$, the MTF encoding $\operatorname{MTF}(T)$ of the text is computed as follows

- start with a list $X=\Sigma[1], \Sigma[2], \ldots, \Sigma[\sigma]$
- scan text from left to right, for character $T[i]$
- append position of $T[i]$ in X to $\operatorname{MTF}(T)$ and
- move $T[i]$ to front of X
- MTF encoding can easily be reverted
- consists of many small numbers
- runs are preserved
- use Huffman on encoding (i) no theoretical improvement but good in practice
$T=a b a b c a b c a b b a \$$

- $X=\$, \mathrm{a}, \mathrm{b}, \mathrm{c}$
- $M T F=2$ and $X=a, \$, b, c$
- MTF $=23$ and $X=\mathrm{b}, \mathrm{a}, \$, \mathrm{c}$
- MTF $=233$ and $X=\$, b, a, c$
- MTF $=2334$ and $X=c, \$, b, a$
- MTF $=23341$ and $X=c, \$, b, a$
- MTF $=233411$ and $X=c, \$, b, a$

Compressing the BWT: Move-to-Front

Definition: Move-To-Front Encoding

Given a text T over an alphabet $\Sigma=[1, \sigma]$, the MTF encoding $\operatorname{MTF}(T)$ of the text is computed as follows

- start with a list $X=\Sigma[1], \Sigma[2], \ldots, \Sigma[\sigma]$
- scan text from left to right, for character $T[i]$
- append position of $T[i]$ in X to $\operatorname{MTF}(T)$ and
- move $T[i]$ to front of X
- MTF encoding can easily be reverted
- consists of many small numbers
- runs are preserved
- use Huffman on encoding (i) no theoretical improvement but good in practice
$T=a b a b c a b c a b b a \$$

$\mathbf{B W T}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 11 | 12 | 13 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a | b | $\$$ | c | c | b | b | a | a | a | a | b | b |

- $X=\$, \mathrm{a}, \mathrm{b}, \mathrm{c}$
- $M T F=2$ and $X=a, \$, b, c$
- MTF $=23$ and $X=\mathrm{b}, \mathrm{a}, \$, \mathrm{c}$
- MTF $=233$ and $X=\$, b, a, c$
- MTF $=2334$ and $X=c, \$, b, a$
- MTF $=23341$ and $X=c, \$, b, a$
- MTF $=233411$ and $X=c, \$, b, a$
- ...
- MTF $=23341131411121$

Pattern Matching using the BWT

Recap

Given a text T of length n over an alphabet Σ, $\alpha \in \Sigma$, and $i \in[1, n]$ then

$$
C[\alpha]=|i \in[1, n]: T[i]<\alpha|
$$

and

$$
\operatorname{rank}_{\alpha}(i)=|\{j \in[1, i]: T[j]=\alpha\}|
$$

- find interval of occurrences in SA using BWT
- $S A$ is divided into intervals based on first character of suffix © as seen during SAIS
- text from BWT is backwards
- search pattern backwards

Backwards Search in the BWT

```
Function BackwardsSearch( \(P\) [1..n], C, rank):
    \(s=1, e=n\)
    for \(i=m, \ldots, 1\) do
        \(s=C[P[i]]+\operatorname{rank}_{P[i]}(s-1)+1\)
        \(e=C[P[i]]+\operatorname{rank}_{P[i]}(e)\)
        if \(s>e\) then
            return \(\emptyset\)
    return \([s, e]\)
```

- no access to text or $S A$ required
- no binary search
- existential queries are easy
- counting queries are easy
- reporting queries require additional information
- example on the board

Sampling the Suffix Array

- reporting queries require $S A$
- storing whole $S A$ requires too much space
- better: sample every s-th $S A$ position in $S A^{\prime}$

Sampling the Suffix Array

- reporting queries require $S A$
- storing whole $S A$ requires too much space
- better: sample every s-th $S A$ position in $S A^{\prime}$.
- how to find sampled position?
- mark sampled positions in bit vector of size n
- if match occurs check if position is sampled
- otherwise find sample using $L F$
- if $S A[i]=j$ then $S A[L F(i)]=j-1$

Sampling the Suffix Array

- reporting queries require $S A$
- storing whole $S A$ requires too much space
- better: sample every s-th $S A$ position in $S A^{\prime}$
- how to find sampled position?
- mark sampled positions in bit vector of size n
- if match occurs check if position is sampled
- otherwise find sample using $L F$
- if $S A[i]=j$ then $S A[L F(i)]=j-1$
- rank $_{1}(i)$ in bit vector is number of sample
- $S A^{\prime}\left[\operatorname{rank}_{1}(i)\right]$ is sampled value
- $S A^{\prime}\left[\operatorname{rank}_{1}(i)\right]+\#$ steps till sample found is correct $S A$ value

Sampling the Suffix Array

- reporting queries require $S A$
- storing whole $S A$ requires too much space
- better: sample every s-th $S A$ position in $S A^{\prime}$
- how to find sampled position?
- mark sampled positions in bit vector of size n
- if match occurs check if position is sampled
- otherwise find sample using $L F$
- if $S A[i]=j$ then $S A[L F(i)]=j-1$
- rank $_{1}(i)$ in bit vector is number of sample
- $S A^{\prime}\left[\operatorname{rank}_{1}(i)\right]$ is sampled value
- $S A^{\prime}\left[\operatorname{rank}_{1}(i)\right]+\#$ steps till sample found is correct $S A$ value
- finding a sample requires $O\left(s \cdot t_{\text {rank }}\right)$ time

Efficient Bit Vectors in Practice (1/3)

std: :vector<char/int/...>

- easy access
- very big: $1,4, \ldots$ bytes per bit

Efficient Bit Vectors in Practice (1/3)

std: : vector<char/int/...>

- easy access
- very big: $1,4, \ldots$ bytes per bit
std: : vector<bool>
- bit vector in C++ (1 bit per byte)
- easy access
- layout depending on implementation

Efficient Bit Vectors in Practice (1/3)

std: :vector<char/int/...>

- easy access
- very big: $1,4, \ldots$ bytes per bit
std: :vector<bool>
- bit vector in C++ (1 bit per byte)
- easy access
- layout depending on implementation

std: :vector<uint64_t>

- requires 8 bytes per bit(?)
- store 64 bits in 8 bytes
- how to access bits

Efficient Bit Vectors in Practice (1/3)

std: :vector<char/int/...>

- easy access
- very big: $1,4, \ldots$ bytes per bit

std: :vector<bool>

- bit vector in C++ (1 bit per byte)
- easy access
- layout depending on implementation

std: :vector<uint64_t>

- requires 8 bytes per bit(?)
- store 64 bits in 8 bytes
- how to access bits
- $i / 64$ is position in 64-bit word
- $i \% 64$ is position in word

Efficient Bit Vectors in Practice (1/3)

std: : vector<char/int/...>

- easy access
- very big: $1,4, \ldots$ bytes per bit

std::vector<bool>

- bit vector in C++ (1 bit per byte)
- easy access

std:: vector<uint64_t>

- requires 8 bytes per bit(?)
- store 64 bits in 8 bytes
- how to access bits
- $i / 64$ is position in 64 -bit word
- $i \% 64$ is position in word
- layout depending on implementation

0	1	2	3	4	5	6	7	8	9
64 bits									

63	0	1	2	3	4	5	62	63	0	
0	1	1	1	0	1	0	1	0	0	

Efficient Bit Vectors in Practice (2/3)

```
// There is a bit vector
std::vector<uint64_t> bit_vector;
// access i-th bit
uint64_t block = bit_vector[i/64];
bool bit = (block >> ( 63 - (i % 64)) ) & 1ULL;
```


Efficient Bit Vectors in Practice (2/3)

```
// There is a bit vector
std::vector<uint64_t> bit_vector;
```

// access i-th bit
uint64_t block = bit_vector[i/64];
bool bit $=(b l o c k \gg(63-(i \% 64))$) \& 1ULL;
\uparrow
shift bits right

| 0 | 1 | 2 | 3 | 4 | 5 | \cdots | 62 | 63 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 0 | 1 | 0 | \cdots | 1 | 0 |

Efficient Bit Vectors in Practice (2/3)

```
// There is a bit vector
std::vector<uint64_t> bit_vector;
```

// access i-th bit
uint64_t block = bit_vector[i/64];
bool bit $=(b l o c k \gg(63-(i \% 64))$) \& 1ULL;
shift bits right
\# bits

Efficient Bit Vectors in Practice (2/3)

```
// There is a bit vector
std::vector<uint64_t> bit_vector;
```

// access i-th bit
uint64_t block = bit_vector[i/64];
bool bit $=(b l o c k \gg(63-(i \% 64))$) \& 1ULL;

0	1	2	3	4	5	62	63		0	1	2	3	4	5	62	63
1	1	1	0	1	0	1	0	>> 60	0	0	0	0	0	0	1	0

Efficient Bit Vectors in Practice (3/3)

(block >> (63-(i\%64))) \& 1ULL;

- fill bit vector from left to right

| | 1 | 2 | 3 | 4 | 5 | 6 | 63 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 0 | 1 | 0 | \ldots | 1 | 0 |

0	0	0	0	0	0	\ldots	1	0

(block >> (i\%64)) \& 1ULL;

- fill bit vector right to left

| 63 | 62 | \ldots | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | \cdots | 0 | 1 | 0 | 1 | 1 | 1 |

0	0	\ldots	1	1	0	0	1	0

Efficient Bit Vectors in Practice (3/3)

(block >> (63-(i\%64))) \& 1ULL;

- fill bit vector from left to right

| | 1 | 2 | 3 | 4 | 5 | 6 | 63 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 0 | 1 | 0 | \ldots | 1 | 0 |

0	0	0	0	0	0	\ldots	1	0

(block >> (i\%64)) \& 1ULL;

- fill bit vector right to left

| 63 | 62 | \ldots | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | \cdots | 0 | 1 | 0 | 1 | 1 | 1 |

0	0	\ldots	1	1	0	0	1	0

Efficient Bit Vectors in Practice (3/3)

(block >> (63-(i\%64))) \& 1ULL;

- fill bit vector from left to right

| 1 | 1 | 2 | 3 | 4 | 5 | \ldots | 62 | 63 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 0 | 1 | 0 | \ldots | 1 | 0 |

0	0	0	0	0	0	\ldots	1	0

- assembler code: mov ecx, edi
not ecx
shr rsi, cl
mov eax, esi
and eax, 1

(block >> (i\%64)) \& 1ULL;

- fill bit vector right to left

63	62	\ldots	5	4	3	2	1	0
0	1	\cdots	0	1	0	1	1	1

0	0	\cdots	1	1	0	0	1	0

Efficient Bit Vectors in Practice (3/3)

(block >> (63-(i\%64))) \& 1ULL;

- fill bit vector from left to right

| | 1 | 2 | 3 | 4 | 5 | \ldots | 62 | 63 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 0 | 1 | 0 | \ldots | 1 | 0 |

0	0	0	0	0	0	\ldots	1	0

- assembler code: mov ecx, edi
not ecx
shr rsi, cl
mov eax, esi
and eax, 1

(block >> (i\%64)) \& 1ULL;

- fill bit vector right to left

| 63 | 62 | \ldots | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | \cdots | 0 | 1 | 0 | 1 | 1 | 1 |

0	0	\ldots	1	1	0	0	1	0

assembler code: mov ecx, edi
shr rsi, cl
mov eax, esi
and eax, 1

Rank Queries in Bit Vectors (1/2)

rank $_{\alpha}(i)$ \# of α s before i
select $_{\alpha}(j)$ position of j-th α

0	1	2	3	4	5	6	7	8	9
0	1	1	0	1	1	0	1	0	0

Rank Queries in Bit Vectors (1/2)

rank $_{\alpha}(i)$ \# of α s before i
select $_{\alpha}(j)$ position of j-th α

rank $_{0}$ (5)

0	1	2	3	4	5	6	7	8	9
0	1	1	0	1	1	0	1	0	0

Rank Queries in Bit Vectors (1/2)

$\operatorname{rank}_{\alpha}(i)$ \# of α s before i
select $_{\alpha}(j)$ position of j-th α

Rank Queries in Bit Vectors (1/2)

$\operatorname{rank}_{\alpha}(i)$ \# of α s before i
select $_{\alpha}(j)$ position of j-th α

Rank Queries in Bit Vectors (1/2)

$\operatorname{rank}_{\alpha}(i)$ \# of α s before i
select $_{\alpha}(j)$ position of j-th α

Rank Queries in Bit Vectors (1/2)

$\operatorname{rank}_{\alpha}(i)$ \# of α s before i
select $_{\alpha}(j)$ position of j-th α

Rank Queries in Bit Vectors (1/2)

$\operatorname{rank}_{\alpha}(i)$ \# of α s before i
select $_{\alpha}(j)$ position of j-th α

Rank Queries in Bit Vectors (1/2)

$\operatorname{rank}_{\alpha}(i)$ \# of α s before i
select $_{\alpha}(j)$ position of j-th α

Rank Queries in Bit Vectors (1/2)

$\operatorname{rank}_{\alpha}(i)$ \# of α s before i
select $_{\alpha}(j)$ position of j-th α

block
super-block
\# of Os w.r.t. BV

Rank Queries in Bit Vectors (1/2)

$\operatorname{rank}_{\alpha}(i)$ \# of α s before i
select $_{\alpha}(j)$ position of j-th α
block
super-block

Rank Queries in Bit Vectors (2/2)

- for a bit vector of size n
- blocks of size $s=\left\lfloor\frac{\lg n}{2}\right\rfloor$
- super blocks of size $s^{\prime}=s^{2}=\Theta\left(\lg ^{2} n\right)$

Rank Queries in Bit Vectors (2/2)

- for a bit vector of size n
- blocks of size $s=\left\lfloor\frac{\lg n}{2}\right\rfloor$
- super blocks of size $s^{\prime}=s^{2}=\Theta\left(\lg ^{2} n\right)$
- for all $\left\lfloor\frac{n}{s^{\prime}}\right\rfloor$ super blocks, store number of Os from beginning of bit vector to end of super-block
- $n / s^{\prime} \cdot \lg n=O\left(\frac{n}{\lg n}\right)=o(n)$ bits of space

Rank Queries in Bit Vectors (2/2)

- for a bit vector of size n
- blocks of size $s=\left\lfloor\frac{\lg n}{2}\right\rfloor$
- super blocks of size $s^{\prime}=s^{2}=\Theta\left(\lg ^{2} n\right)$
- for all $\left\lfloor\frac{n}{s^{\prime}}\right\rfloor$ super blocks, store number of Os from beginning of bit vector to end of super-block
- $n / s^{\prime} \cdot \lg n=O\left(\frac{n}{\lg n}\right)=o(n)$ bits of space
- for all $\left\lfloor\frac{n}{s}\right\rfloor$ blocks, store number of 0s from beginning of super block to end of block
- $n / s \cdot \lg s^{\prime}=O\left(\frac{n \lg \lg n}{\lg n}\right)=O(n)$ bits of space

Rank Queries in Bit Vectors (2/2)

- for a bit vector of size n
- blocks of size $s=\left\lfloor\frac{\lg n}{2}\right\rfloor$
- super blocks of size $s^{\prime}=s^{2}=\Theta\left(\lg ^{2} n\right)$
- for all $\left\lfloor\frac{n}{s^{\prime}}\right\rfloor$ super blocks, store number of Os from beginning of bit vector to end of super-block
- $n / s^{\prime} \cdot \lg n=O\left(\frac{n}{\lg n}\right)=o(n)$ bits of space
- for all $\left\lfloor\frac{n}{s}\right\rfloor$ blocks, store number of Os from beginning of super block to end of block
- $n / s \cdot \lg s^{\prime}=O\left(\frac{n \lg \lg n}{\lg n}\right)=O(n)$ bits of space
- for all length-s bit vectors, for every position i store number of Os up to i
- $2^{\frac{\lg n}{2}} \cdot s \cdot \lg s=O(\sqrt{n} \lg n \lg \lg n)=o(n)$ bits of space

Rank Queries in Bit Vectors (2/2)

- for a bit vector of size n
- blocks of size $s=\left\lfloor\frac{\lg n}{2}\right\rfloor$
- super blocks of size $s^{\prime}=s^{2}=\Theta\left(\lg ^{2} n\right)$
- for all $\left\lfloor\frac{n}{s^{\prime}}\right\rfloor$ super blocks, store number of Os from beginning of bit vector to end of super-block
- $n / s^{\prime} \cdot \lg n=O\left(\frac{n}{\lg n}\right)=o(n)$ bits of space
- for all $\left\lfloor\frac{n}{s}\right\rfloor$ blocks, store number of Os from beginning of super block to end of block
- $n / s \cdot \lg s^{\prime}=O\left(\frac{n \lg \lg n}{\lg n}\right)=O(n)$ bits of space
- for all length-s bit vectors, for every position i store number of Os up to i
- $2^{\frac{\lg n}{2}} \cdot s \cdot \lg s=O(\sqrt{n} \lg n \lg \lg n)=o(n)$ bits of space

Rank Queries in Bit Vectors (2/2)

- for a bit vector of size n
- blocks of size $s=\left\lfloor\frac{\lg n}{2}\right\rfloor$
- super blocks of size $s^{\prime}=s^{2}=\Theta\left(\lg ^{2} n\right)$
- for all $\left\lfloor\frac{n}{s^{\prime}}\right\rfloor$ super blocks, store number of Os from beginning of bit vector to end of super-block
- $n / s^{\prime} \cdot \lg n=O\left(\frac{n}{\lg n}\right)=o(n)$ bits of spacePINGO how fast can rank queries be answered?
- for all $\left\lfloor\frac{n}{s}\right\rfloor$ blocks, store number of Os from beginning of super block to end of block
- $n / s \cdot \lg s^{\prime}=O\left(\frac{n \lg \lg n}{\lg n}\right)=O(n)$ bits of space
- for all length-s bit vectors, for every position i store number of Os up to i
- $2^{\frac{\lg n}{2}} \cdot s \cdot \lg s=O(\sqrt{n} \lg n \lg \lg n)=o(n)$ bits of space
- query in $O(1)$ time 2.
- $\operatorname{rank}_{0}(i)=i-\operatorname{rank}_{1}(i)$

The FM-Index (First Look) [FM00]

Building Blocks of FM-Index

- wavelet tree on BWT providing rank-function
(i) wavelet trees are topic of next lecture!
- C-array
- sampled suffix array with sample rate s
- bit vector marking sampled suffix array positions

Lemma: FM-Index Space Requirements

Given a text T of length n over an alphabet of size σ, the FM-index requires $O(n \lg \sigma)$ bits of space

Space Requirements

- wavelet tree: $n\lceil\lg \sigma\rceil(1+o(1))$ bits
- C-array: $\sigma\lceil\lg n\rceil$ bits (i) $n(1+o(1))$ bits if
$\sigma \geq \frac{n}{\lg n}$
- sampled suffix array: $\frac{n}{s}\lceil\lg n\rceil$ bits
- bit vector: $n(1+o(1))$ bits
- space and time bounds can be achieved with $s=\lg _{\sigma} n$

Conclusion and Outlook

This Lecture

- Burrows-Wheeler transform
- introduction to FM-index

Linear Time Construction

Conclusion and Outlook

This Lecture

- Burrows-Wheeler transform
- introduction to FM-index
- efficient bit vectors
- rank queries on bit vectors

Linear Time Construction

Conclusion and Outlook

This Lecture

- Burrows-Wheeler transform
- introduction to FM-index
- efficient bit vectors
- rank queries on bit vectors

Next Lecture

- wavelet trees
- more on FM-index

Linear Time Construction

Bibliography I

[BW94] Michael Burrows and David J. Wheeler. A Block-Sorting Lossless Data Compression Algorithm. Technical report. 1994.
[FM00] Paolo Ferragina and Giovanni Manzini. "Opportunistic Data Structures with Applications". In: FOCS. IEEE Computer Society, 2000, pages 390-398. DOI: 10.1109/SFCS.2000.892127.
[KK19] Dominik Kempa and Tomasz Kociumaka. "String Synchronizing Sets: Sublinear-Time BWT Construction and Optimal LCE Data Structure". In: STOC. ACM, 2019, pages 756-767.
[ZL77] Jacob Ziv and Abraham Lempel. "A Universal Algorithm for Sequential Data Compression". In: IEEE Trans. Inf. Theory 23.3 (1977), pages 337-343. DOI: 10.1109/TIT.1977.1055714.
[ZL78] Jacob Ziv and Abraham Lempel. "Compression of Individual Sequences via Variable-Rate Coding". In: IEEE Trans. Inf. Theory 24.5 (1978), pages 530-536. DOI: 10.1109/TIT.1978.1055934.

