Text Indexing

Lecture 02: Inverted Index
Tim Niklas Uhl

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License ©(1)(0): www.creativecommons.org/licenses/by-sa/4.0 | commit 0cd47f0 compiled at 2023-11-06-09:06

The Inverted Index

Definition: Inverted Index

Given a set of documents and terms that are contained in the documents, an inverted index stores the terms and associated with each term t

- the number of documents f_{t} that contain t and
- an ordered list $L(t)$ of documents containing t

1 The old night keeper keeps the keep in the town 2 In the big old house in the big old gown
3 The house in the town had the big old keep 4 Where the old night keeper never did sleep 5 The night keeper keeps the keep in the night 6 And keeps in the dark and sleeps in the light

The Inverted Index

Definition: Inverted Index

Given a set of documents and terms that are contained in the documents, an inverted index stores the terms and associated with each term t

- the number of documents f_{t} that contain t and
- an ordered list $L(t)$ of documents containing t

1 The old night keeper keeps the keep in the town 2 In the big old house in the big old gown
3 The house in the town had the big old keep 4 Where the old night keeper never did sleep 5 The night keeper keeps the keep in the night 6 And keeps in the dark and sleeps in the light

term t	f_{t}	$L(t)$
and	1	$[6]$
big	2	$[2,3]$
dark	1	$[6]$
\cdots	\cdots	\cdots
had	1	$[3]$
house	2	$[2,3]$
in	5	$[1,2,3,5,6]$
\cdots	\cdots	\cdots

The Inverted Index

Definition: Inverted Index

Given a set of documents and terms that are contained in the documents, an inverted index stores the terms and associated with each term t

- the number of documents f_{t} that contain t and
- an ordered list $L(t)$ of documents containing t

1 The old night keeper keeps the keep in the town 2 In the big old house in the big old gown
3 The house in the town had the big old keep 4 Where the old night keeper never did sleep 5 The night keeper keeps the keep in the night 6 And keeps in the dark and sleeps in the light

term t	f_{t}	$L(t)$
and	1	$[6]$
big	2	$[2,3]$
dark	1	$[6]$
\ldots	\ldots	\ldots
had	1	$[3]$
house	2	$[2,3]$
in	5	$[1,2,3,5,6]$
\ldots	\ldots	\ldots

The Inverted Index: Queries

Conjunctive Queries

- Given two lists M and N, return all documents contained in both lists: $M \cap N$

1 The old night keeper keeps the keep in the town 2 In the big old house in the big old gown 3 The house in the town had the big old keep 4 Where the old night keeper never did sleep 5 The night keeper keeps the keep in the night 6 And keeps in the dark and sleeps in the light

The Inverted Index: Queries

Conjunctive Queries

- Given two lists M and N, return all documents contained in both lists: $M \cap N$

Disjunctive Queries

- Given two lists M and N, return all documents contained in either list: $M \cup N$

1 The old night keeper keeps the keep in the town 2 In the big old house in the big old gown
3 The house in the town had the big old keep 4 Where the old night keeper never did sleep 5 The night keeper keeps the keep in the night 6 And keeps in the dark and sleeps in the light

term t	f_{t}	$L(t)$
and	1	$[6]$
big	2	$[2,3]$
dark	1	$[6]$
\cdots	\cdots	\cdots
had	1	$[3]$
house	2	$[2,3]$
in	5	$[1,2,3,5,6]$

The Inverted Index: Queries

Conjunctive Queries

- Given two lists M and N, return all documents contained in both lists: $M \cap N$

Disjunctive Queries

- Given two lists M and N, return all documents contained in either list: $M \cup N$

Phrase Queries

- Given two terms t_{1} and t_{2}, return all documents containing $t_{1} t_{2}$ (i) all previous discussed indices can do so

1 The old night keeper keeps the keep in the town 2 In the big old house in the big old gown 3 The house in the town had the big old keep 4 Where the old night keeper never did sleep 5 The night keeper keeps the keep in the night 6 And keeps in the dark and sleeps in the light

term t	f_{t}	$L(t)$
and	1	$[6]$
big	2	$[2,3]$
dark	1	$[6]$
\cdots	\cdots	\cdots
had	1	$[3]$
house	2	$[2,3]$
in	5	$[1,2,3,5,6]$

Inverted Index: Representing the Terms (1/2)

- terms can be represented using tries
- in each leaf, store pointer to list for term
- simple representation
- easy to add and remove terms

Inverted Index: Representing the Terms (2/2)

- use multiplicative hash function
- $h(t[1] \ldots t[\ell])=\left(\left(\sum_{i=1}^{\ell} a_{i} \cdot t[i]\right) \bmod p\right) \bmod m$
- for prime $p<m$ and
- fixed random integers $a_{i} \in[1, p]$
- good worst cast guarantee
- $\operatorname{Prob}[h(x)=h(y)]=O(1 / m)$ for $x \neq y$

Inverted Index: Document Lists

- document ids are sorted
- if ids are in $[1, U]$, storing them requires $\lceil\lg U\rceil$ bits per id

Binary Codes

- an integer x can be represented as binary $(x)_{2}$
- for fast access, all binary representations must have the same width

Now

- different ideas on how to better store ids
- not all ideas work with all algorithms
- different space usage and complexity

Difference Encoding

- given a document list $N=\left[d_{1}, \ldots, d_{|N|}\right]$
- the document ids are sorted: $d_{1}<\cdots<d_{|N|}$
- store first id
- represent other ids by difference: $\delta_{i}=d_{i}-d_{i-1}$

Definition: \triangle-Encoding

$$
\begin{aligned}
& \text { A } \Delta \text {-encoded document list } N=\left[d_{1}, \ldots, d_{|N|}\right] \text { is } \\
& N=\left[d_{1}, d_{2}-d_{1}, \ldots, d_{|N|}-d_{|N-1|}\right]
\end{aligned}
$$

Difference Encoding

- given a document list $N=\left[d_{1}, \ldots, d_{|N|}\right]$
- the document ids are sorted: $d_{1}<\cdots<d_{|N|}$
- store first id
- represent other ids by difference: $\delta_{i}=d_{i}-d_{i-1}$

Just ids:

- $N=[4,11,12,30,42,54]$
Δ-encoded
- $N=[4,7,1,18,12,12]$

Definition: \triangle-Encoding

A \triangle-encoded document list $N=\left[d_{1}, \ldots, d_{|N|}\right]$ is $N=\left[d_{1}, d_{2}-d_{1}, \ldots, d_{|N|}-d_{|N-1|}\right]$

Difference Encoding

- given a document list $N=\left[d_{1}, \ldots, d_{|N|}\right]$
- the document ids are sorted: $d_{1}<\cdots<d_{|N|}$
- store first id
- represent other ids by difference: $\delta_{i}=d_{i}-d_{i-1}$

Just ids:

- $N=[4,11,12,30,42,54]$
Δ-encoded
- $N=[4,7,1,18,12,12]$

Definition: \triangle-Encoding

A \triangle-encoded document list $N=\left[d_{1}, \ldots, d_{|N|}\right]$ is $N=\left[d_{1}, d_{2}-d_{1}, \ldots, d_{|N|}-d_{|N-1|}\right]$

- can this be compressed further?
- accessing id requires scanning

Unary Encoding

Definition: Unary Codes

Given an integer $x>0$, its unary code $(x)_{1}$ is $1^{x-1} 0$

- $\left|(x)_{1}\right|=x$ bits
- encoded integers can be accessed using rank and select queries
- if 0 has to be encoded, all codes require an additional bit

Unary Encoding

Definition: Unary Codes

Given an integer $x>0$, its unary code $(x)_{1}$ is $1^{x-1} 0$

- $\left|(x)_{1}\right|=x$ bits
- encoded integers can be accessed using rank and select queries
- if 0 has to be encoded, all codes require an additional bit

Just ids:

- $N=[4,11,12,30,42,54]$
Δ-encoded
- $N=[4,7,1,18,12,12]$

Unary Codes:

- $N=\left[1110111111001^{17} 01^{11} 0111111111110\right]$

Ternary Encoding

Definition: Ternary Codes

Given an integer $x>0$, represent $x-1$ in ternary using

- 00 to represent 0
- 01 to represent 1
- 10 to represent 2
and append 11 to each code to obtain its ternary code $(x)_{3}$
- $\left|(x)_{3}\right|=2\left\lfloor\lg _{3}(x-1)\right\rfloor+2$

Ternary Encoding

Definition: Ternary Codes

Given an integer $x>0$, represent $x-1$ in ternary using

- 00 to represent 0
- 01 to represent 1
- 10 to represent 2
and append 11 to each code to obtain its ternary code $(x)_{3}$
- $\left|(x)_{3}\right|=2\left\lfloor\lg _{3}(x-1)\right\rfloor+2$

Just ids:

- $N=[4,11,12,30,42,54]$
Δ-encoded
- $N=[4,7,1,18,12,12]$

Unary Codes:

- $N=\left[1110111111001^{17} 01^{11} 0111111111110\right]$

Ternary Codes:

- $N=[0100111000110001101011$
$0100101101001011]$

Fibonacci Encoding

Lemma: Zeckendorf's Theorem

Let f_{i} be the i-th Fibonacci number, then each integer $x>0$ can be represented as

$$
n=\sum_{i=2}^{k} c_{i} f_{i}
$$

with $c_{i} \in\{0,1\}$ and $c_{i}+c_{i+1}<2$

Definition: Fibonacci Code

Given an integer $x>0$ use the sequence of c_{i} 's followed by a 1 as its Fibonacci code $(x)_{\phi}$

Fibonacci Encoding

Lemma: Zeckendorf's Theorem

Let f_{i} be the i-th Fibonacci number, then each integer $x>0$ can be represented as

$$
n=\sum_{i=2}^{k} c_{i} f_{i}
$$

with $c_{i} \in\{0,1\}$ and $c_{i}+c_{i+1}<2$

Definition: Fibonacci Code

Given an integer $x>0$ use the sequence of c_{i} 's followed by a 1 as its Fibonacci code $(x)_{\phi}$

- 11 does not occur in any sequence
- to compute find largest Fibonacci number $f_{i} \leq x$ and repeat process for $x-f_{i}$
- Fibonacci codes are smaller than ternary codes for smaller integers

Fibonacci Encoding

Lemma: Zeckendorf's Theorem

Let f_{i} be the i-th Fibonacci number, then each integer $x>0$ can be represented as

$$
n=\sum_{i=2}^{k} c_{i} f_{i}
$$

with $c_{i} \in\{0,1\}$ and $c_{i}+c_{i+1}<2$

Definition: Fibonacci Code

Given an integer $x>0$ use the sequence of c_{i} 's followed by a 1 as its Fibonacci code $(x)_{\phi}$

- 11 does not occur in any sequence
- to compute find largest Fibonacci number $f_{i} \leq x$ and repeat process for $x-f_{i}$
- Fibonacci codes are smaller than ternary codes for smaller integers
- $f_{2}=1, f_{3}=2, f_{4}=3, f_{5}=5, f_{6}=8, f_{7}=13$
- 4: $f_{2}+f_{4}=1011$
- 7: $f_{3}+f_{5}=01011$
- $1: f_{2}=11$
- 18: $f_{5}+f_{7}=0001011$
- 12: $f_{2}+f_{4}+f_{6}=101011$

Elias- γ-Encoding [Eli75]

Definition: Elias- γ-Code

Given an integer $x>0$, its Elias-gamma-code $(x)_{\gamma}$ is

$$
(x)_{\gamma}=0^{\lfloor\lg x\rfloor}(x)_{2}
$$

- $\left|(x)_{\gamma}\right|=2\lfloor\lg x\rfloor+1$ bit
- first part gives length of binary representation
- first bit of $(x)_{2}$ is one bit

Elias- γ-Encoding [Eli75]

Definition: Elias- γ-Code

Given an integer $x>0$, its Elias-gamma-code $(x)_{\gamma}$ is

$$
(x)_{\gamma}=0^{\lfloor\lg x\rfloor}(x)_{2}
$$

- $\left|(x)_{\gamma}\right|=2\lfloor\lg x\rfloor+1$ bit
- first part gives length of binary representation
- first bit of $(x)_{2}$ is one bit
- 4: 00100
- 7: 00111
- 1: 1
- 18: 000010010
- 12: 0001000

Elias- δ-Encoding [Eli75]

Definition: Elias- δ-Code

Given an integer $x>0$, its Elias- δ-code $(x)_{\delta}$ is

$$
(x)_{\delta}=(\lfloor\lg x\rfloor+1)_{\gamma}(x)_{2}\left[2 . .\left|(x)_{2}\right|\right]
$$

- encode length of binary representation using Elias- γ code
- first bit of binary representation not required anymore
- $\left|(x)_{\delta}\right|=2\lfloor\lg (\lfloor\lg x\rfloor+1)\rfloor+1+\lfloor\lg x\rfloor$ bits

Elias- δ-Encoding [Eli75]

Definition: Elias- δ-Code

Given an integer $x>0$, its Elias- δ-code $(x)_{\delta}$ is

$$
(x)_{\delta}=(\lfloor\lg x\rfloor+1)_{\gamma}(x)_{2}\left[2 . .\left|(x)_{2}\right|\right]
$$

- encode length of binary representation using Elias- γ code
- first bit of binary representation not required anymore
- $\left|(x)_{\delta}\right|=2\lfloor\lg (\lfloor\lg x\rfloor+1)\rfloor+1+\lfloor\lg x\rfloor$ bits

Elias- γ

- 4: 00100
- 7: 00111
- 1: 1
- 18: 000010010
- 12: 0001000

Elias- δ

- 4: 01100
- 7: 01111
- $1: 1$
- 18: 001010010
- 12: 00100100

Hands-on Elias-Encoding

Definition: Elias- δ-Code

Given an integer $x>0$, its Elias- δ-code $(x)_{\delta}$ is

$$
(x)_{\delta}=(\lfloor\lg x\rfloor+1)_{\gamma}(x)_{2}\left[2 . .\left|(x)_{2}\right|\right]
$$

Definition: Elias- γ-Code

Given an integer $x>0$, its Elias-gamma-code $(x)_{\gamma}$ is

$$
(x)_{\gamma}=0^{\lfloor\lg x\rfloor}(x)_{2}
$$

Hands-on Elias-Encoding

Definition: Elias- δ-Code

Given an integer $x>0$, its Elias- δ-code $(x)_{\delta}$ is

$$
(x)_{\delta}=(\lfloor\lg x\rfloor+1)_{\gamma}(x)_{2}\left[2 . .\left|(x)_{2}\right|\right]
$$

Definition: Elias- γ-Code

Given an integer $x>0$, its Elias-gamma-code $(x)_{\gamma}$ is

$$
(x)_{\gamma}=0^{\lfloor\lg x\rfloor}(x)_{2}
$$

Exercise 1

Calculate the Elias- γ and Elias- δ encoding of 42.

Exercise 2

Which integer is represented by the following Elias- δ code?

001010111

Hands-on Elias-Encoding

Definition: Elias- δ-Code

Given an integer $x>0$, its Elias- δ-code $(x)_{\delta}$ is

$$
(x)_{\delta}=(\lfloor\lg x\rfloor+1)_{\gamma}(x)_{2}\left[2 . .\left|(x)_{2}\right|\right]
$$

Definition: Elias- γ-Code

Given an integer $x>0$, its Elias-gamma-code $(x)_{\gamma}$ is

$$
(x)_{\gamma}=0^{\lfloor\lg x\rfloor}(x)_{2}
$$

Exercise 1

Calculate the Elias- γ and Elias- δ encoding of 42.

- 00000101010
- 0011001010

Exercise 2

Which integer is represented by the following Elias- δ code?

001010111

Hands-on Elias-Encoding

Definition: Elias- δ-Code

Given an integer $x>0$, its Elias- δ-code $(x)_{\delta}$ is

$$
(x)_{\delta}=(\lfloor\lg x\rfloor+1)_{\gamma}(x)_{2}\left[2 . .\left|(x)_{2}\right|\right]
$$

Definition: Elias- γ-Code

Given an integer $x>0$, its Elias-gamma-code $(x)_{\gamma}$ is

$$
(x)_{\gamma}=0^{\lfloor\lg x\rfloor}(x)_{2}
$$

Exercise 1

Calculate the Elias- γ and Elias- δ encoding of 42.

- 00000101010
- 0011001010

Exercise 2

Which integer is represented by the following Elias- δ code?

$$
001010111 \quad \rightarrow \quad 23
$$

Golomb Encoding [Gol66]

Definition: Golomb Code

Given an integer $x>0$ and a constant $b>0$, the
Golomb code consists of

- $q=\left\lfloor\frac{x}{b}\right\rfloor$
- $r=x-q b=x \% b$
- $c=\lceil\lg b\rceil$
with

$$
(x)_{\mathrm{Gol}(b)}=(q)_{1}(r)_{2}
$$

where $(r)_{2}$ depends on its size

- $r<2^{\lfloor\lg b\rfloor-1}: r$ requires $\lfloor\lg b\rfloor$ bits and starts with a 0
- $r \geq 2^{\lfloor\lg b\rfloor-1}: r$ requires $\lceil\lg b\rceil$ bits and starts with a 1 and it encodes $r-2^{\lfloor\lg b\rfloor-1}$

Golomb Encoding [Gol66]

Definition: Golomb Code

Given an integer $x>0$ and a constant $b>0$, the Golomb code consists of

- $q=\left\lfloor\frac{x}{b}\right\rfloor$
- $r=x-q b=x \% b$
- $c=\lceil\lg b\rceil$
with

$$
(x)_{\mathrm{Gol}(b)}=(q)_{1}(r)_{2}
$$

where $(r)_{2}$ depends on its size

- $r<2^{\lfloor\lg b\rfloor-1}: r$ requires $\lfloor\lg b\rfloor$ bits and starts with a 0
- $r \geq 2\lfloor\lg b\rfloor-1: r$ requires $\lceil\lg b\rceil$ bits and starts with a 1 and it encodes $r-2^{\lfloor\lg b\rfloor-1}$

Golomb Encoding [Gol66]

Definition: Golomb Code

Given an integer $x>0$ and a constant $b>0$, the Golomb code consists of

- $q=\left\lfloor\frac{x}{b}\right\rfloor$
- $r=x-q b=x \% b$
- $c=\lceil\lg b\rceil$
with

$$
(x)_{\mathrm{Gol}(b)}=(q)_{1}(r)_{2}
$$

where $(r)_{2}$ depends on its size

- $r<2^{\lfloor\lg b\rfloor-1}: r$ requires $\lfloor\lg b\rfloor$ bits and starts with a 0
- $r \geq 2\lfloor\lg b\rfloor-1: r$ requires $\lceil\lg b\rceil$ bits and starts with a 1 and it encodes $r-2^{\lfloor\lg b\rfloor-1}$
- b has to be fixed for all codes
- still variable length
- for $b=5$, there are 4 remainders:
$00,01,100,101$, and 110
- $2^{\lfloor\lg 5\rfloor-1}=2$
- $0,1<2$: 00 and 01 require 2 bits
- $2,3,4 \geq 2$: require 3 bits and encode $0,1,2$ starting with 1

Comparison of Codes (1/2)

Comparison of Codes (2/2)

Back to Queries: Conjunctive Queries

Task

- given terms t_{1}, \ldots, t_{k}
- intersect $L\left(t_{1}\right) \cap L\left(t_{2}\right) \cap \cdots \cap L\left(t_{k}\right)$
- pairwise intersection usually works best
- intersection of two lists is of interest
- start with two shortest and continue like that

Back to Queries: Conjunctive Queries

Task

- given terms t_{1}, \ldots, t_{k}
- intersect $L\left(t_{1}\right) \cap L\left(t_{2}\right) \cap \cdots \cap L\left(t_{k}\right)$
- pairwise intersection usually works best
- intersection of two lists is of interest
- start with two shortest and continue like that

Setting

- two lists M and N with
- $|M|=m$ and $|N|=n$ and
- $m \leq n$
- different algorithms to intersect lists
- assuming lists are Δ encoded

Naive Scanning

Zipper

- scan both lists as in binary merging

Naive Scanning

Zipper

- scan both lists as in binary merging

Lemma: Running Time Zipper

Intersecting two sorted lists of sizes m and n using zipper requires $O(m+n)$ time.

Naive Scanning

Zipper

- scan both lists as in binary merging

Lemma: Running Time Zipper

Intersecting two sorted lists of sizes m and n using zipper requires $O(m+n)$ time.

Proof (Sketch)

- compare entries until one list is empty
- if $\max \{i d: i d \in N\}<$ some element in M, then all elements in N are compared
- resulting in $O(n+m)$ time

Naive Scanning

Zipper

- scan both lists as in binary merging

Lemma: Running Time Zipper

Intersecting two sorted lists of sizes m and n using zipper requires $O(m+n)$ time.

Proof (Sketch)

- compare entries until one list is empty
- if $\max \{i d: i d \in N\}<$ some element in M, then all elements in N are compared
- resulting in $O(n+m)$ time
- works well with Δ-encoding
- in real implementations zipping is good until $n>20 m$ [BS05]

Naive Scanning

Zipper

- scan both lists as in binary merging

Lemma: Running Time Zipper

Intersecting two sorted lists of sizes m and n using zipper requires $O(m+n)$ time.

Proof (Sketch)

- compare entries until one list is empty
- if $\max \{i d: i d \in N\}<$ some element in M, then all elements in N are compared
- resulting in $O(n+m)$ time
- works well with Δ-encoding
- in real implementations zipping is good until $n>20 m$ [BS05]
- example on the board

Binary Search (1/2)

Simple Binary Search
- search each document in M in N using binary search

Binary Search (1/2)

Simple Binary Search

- search each document in M in N using binary search

Lemma: Running Time Simple Binary Search

Intersecting two sorted lists of sizes m and n using a simple binary search requires $O(m \lg n)$ time.

Binary Search (1/2)

Simple Binary Search

- search each document in M in N using binary search

Lemma: Running Time Simple Binary Search

Intersecting two sorted lists of sizes m and n using a simple binary search requires $O(m \lg n)$ time.

Proof (Sketch)

- binary search on N because $n \geq m$
- for each id in N binary search in $O(\lg n)$ time
- resulting in $O(m \lg n)$ total time

Binary Search (1/2)

Simple Binary Search

- search each document in M in N using binary search

Lemma: Running Time Simple Binary Search

Intersecting two sorted lists of sizes m and n using a simple binary search requires $O(m \lg n)$ time.

Proof (Sketch)

- binary search on N because $n \geq m$
- for each id in N binary search in $O(\lg n)$ time
- resulting in $O(m \lg n)$ total time

Binary Search (1/2)

Simple Binary Search

- search each document in M in N using binary search

Lemma: Running Time Simple Binary Search

Intersecting two sorted lists of sizes m and n using a simple binary search requires $O(m \lg n)$ time.

Proof (Sketch)

- binary search on N because $n \geq m$
- for each id in N binary search in $O(\lg n)$ time
- resulting in $O(m \lg n)$ total time

Binary Search (2/2)

Double Binary Search

- let $p_{m}=\left\lfloor\frac{m}{2}\right\rfloor$
- search for $M\left[p_{m}\right]$ in N using binary search
- let result be position p_{n}
- if $M\left[p_{m}\right]=N\left[p_{n}\right]$ add $M\left[p_{m}\right]$ to result
- continue recursively by intersecting
- $M\left[1, p_{m}\right] \cap N\left[1, p_{n}\right]$ and
- $M\left[1+p_{m},|M|\right] \cap N\left[1+p_{n},|N|\right]$

Binary Search (2/2)

Double Binary Search

- let $p_{m}=\left\lfloor\frac{m}{2}\right\rfloor$
- search for $M\left[p_{m}\right]$ in N using binary search
- let result be position p_{n}
- if $M\left[p_{m}\right]=N\left[p_{n}\right]$ add $M\left[p_{m}\right]$ to result
- continue recursively by intersecting
- $M\left[1, p_{m}\right] \cap N\left[1, p_{n}\right]$ and
- $M\left[1+p_{m},|M|\right] \cap N\left[1+p_{n},|N|\right]$

Lemma: Running Time Double Binary Search

Intersecting two sorted lists of sizes m and n using a double binary search requires $O\left(m \lg \frac{n}{m}\right)$ time.

Binary Search (2/2)

Double Binary Search

- let $p_{m}=\left\lfloor\frac{m}{2}\right\rfloor$
- search for $M\left[p_{m}\right]$ in N using binary search
- let result be position p_{n}
- if $M\left[p_{m}\right]=N\left[p_{n}\right]$ add $M\left[p_{m}\right]$ to result
- continue recursively by intersecting
- $M\left[1, p_{m}\right] \cap N\left[1, p_{n}\right]$ and
- $M\left[1+p_{m},|M|\right] \cap N\left[1+p_{n},|N|\right]$

Lemma: Running Time Double Binary Search

Intersecting two sorted lists of sizes m and n using a double binary search requires $O\left(m \lg \frac{n}{m}\right)$ time.

Binary Search (2/2)

Double Binary Search

- let $p_{m}=\left\lfloor\frac{m}{2}\right\rfloor$
- search for $M\left[p_{m}\right]$ in N using binary search
- let result be position p_{n}
- if $M\left[p_{m}\right]=N\left[p_{n}\right]$ add $M\left[p_{m}\right]$ to result
- continue recursively by intersecting
- $M\left[1, p_{m}\right] \cap N\left[1, p_{n}\right]$ and
- $M\left[1+p_{m},|M|\right] \cap N\left[1+p_{n},|N|\right]$

Lemma: Running Time Double Binary Search

Intersecting two sorted lists of sizes m and n using a double binary search requires $O\left(m \lg \frac{n}{m}\right)$ time.

Proof (Sketch)

- look at running time of binary search at each recursion depth
- depth 0: Ign
- depth $1: 2 \lg \frac{n}{2}$
- depth 2: $4 \lg \frac{n}{4}$
- depth $m: m \lg \frac{n}{m}$

Depth of recursion is at most $\lg m$, therefore

- $\sum_{i=0}^{\lg m} \frac{m}{2^{i}}\left(\lg \frac{n}{m}+i\right)=m\left(\lg \frac{n}{m} \sum_{i=0}^{\lg m} \frac{1}{2^{i}}+\sum_{i=0}^{\lg m} \frac{1}{2^{i}}\right)$
- total: $O\left(m \lg \frac{n}{m}\right)$
- example on board

Exponential Search

Exponential Search

- assume that $M[1 . . i]$ have been processed and
- $M[i]$ is closest to $N[j]$ for some j
- now find $M[i+1]$ in N by comparing it to $N[j], N[j+1], N[j+2], N[j+4], \ldots$ until
- $N\left[j+2^{k}\right] \geq M[i+1]$ (if $N\left[j+2^{k}=M[i+1]\right.$, we are done with this iteration
- binary search for $M[i+1]$ in $N\left[j+2^{k-1} . . j+2^{k}\right]$

Exponential Search

Exponential Search

- assume that $M[1 . . i]$ have been processed and
- $M[i]$ is closest to $N[j]$ for some j
- now find $M[i+1]$ in N by comparing it to $N[j], N[j+1], N[j+2], N[j+4], \ldots$ until
- $N\left[j+2^{k}\right] \geq M[i+1]$ (if $N\left[j+2^{k}=M[i+1]\right.$, we are done with this iteration
- binary search for $M[i+1]$ in $N\left[j+2^{k-1} . . j+2^{k}\right]$

Lemma: Running Time Exponential Search

Intersecting two sorted lists of sizes m and n using a exponential search requires $O\left(m \lg \frac{n}{m}\right)$ time.

Exponential Search

Exponential Search

- assume that $M[1 . . i]$ have been processed and
- $M[i]$ is closest to $N[j]$ for some j
- now find $M[i+1]$ in N by comparing it to $N[j], N[j+1], N[j+2], N[j+4], \ldots$ until
- $N\left[j+2^{k}\right] \geq M[i+1]$ (if $N\left[j+2^{k}=M[i+1]\right.$, we are done with this iteration
- binary search for $M[i+1]$ in $N\left[j+2^{k-1} . . j+2^{k}\right]$

Lemma: Running Time Exponential Search

Intersecting two sorted lists of sizes m and n using a exponential search requires $O\left(m \lg \frac{n}{m}\right)$ time.

Proof

- searching for each element $M[i]$ requires $O\left(\lg d_{i}\right)$ time
- d_{i} is distance between $M[i-1]$ and $M[i]$ in N
- $O\left(\sum_{i}^{m} \lg d_{i}\right)$, which is maximal if $d_{i}=\frac{n}{m}$
- total: $O\left(m \lg \frac{n}{m}\right)$

Exponential Search

Exponential Search

- assume that $M[1 . . i]$ have been processed and
- $M[i]$ is closest to $N[j]$ for some j
- now find $M[i+1]$ in N by comparing it to $N[j], N[j+1], N[j+2], N[j+4], \ldots$ until
- $N\left[j+2^{k}\right] \geq M[i+1]$ (if $N\left[j+2^{k}=M[i+1]\right.$, we are done with this iteration
- binary search for $M[i+1]$ in $N\left[j+2^{k-1} . . j+2^{k}\right]$

Proof

- searching for each element $M[i]$ requires $O\left(\lg d_{i}\right)$ time
- d_{i} is distance between $M[i-1]$ and $M[i]$ in N
- $O\left(\sum_{i}^{m} \lg d_{i}\right)$, which is maximal if $d_{i}=\frac{n}{m}$
- total: $O\left(m \lg \frac{n}{m}\right)$
- example on board

Lemma: Running Time Exponential Search

Intersecting two sorted lists of sizes m and n using a exponential search requires $O\left(m \lg \frac{n}{m}\right)$ time.

Exponential Search

Exponential Search

- assume that $M[1 . . i]$ have been processed and
- $M[i]$ is closest to $N[j]$ for some j
- now find $M[i+1]$ in N by comparing it to $N[j], N[j+1], N[j+2], N[j+4], \ldots$ until
- $N\left[j+2^{k}\right] \geq M[i+1]$ (if $N\left[j+2^{k}=M[i+1]\right.$, we are done with this iteration
- binary search for $M[i+1]$ in $N\left[j+2^{k-1} . . j+2^{k}\right]$

Lemma: Running Time Exponential Search

Intersecting two sorted lists of sizes m and n using a exponential search requires $O\left(m \lg \frac{n}{m}\right)$ time.

Proof

- searching for each element $M[i]$ requires $O\left(\lg d_{i}\right)$ time
- d_{i} is distance between $M[i-1]$ and $M[i]$ in N
- $O\left(\sum_{i}^{m} \lg d_{i}\right)$, which is maximal if $d_{i}=\frac{n}{m}$
- total: $O\left(m \lg \frac{n}{m}\right)$
- example on board
- works well if lists do not fit into main memory
- still not working with Δ-encoding

Engineered Representations

Two-Level Representation

- store every B-th element of the list in top-level
- in addition to Δ-encoded ids
- store original id for each sampled value in id-list

Engineered Representations

Two-Level Representation

- store every B-th element of the list in top-level
- in addition to Δ-encoded ids
- store original id for each sampled value in id-list

Binary Search

- binary search on top-level
- scan on list in relevant interval
- example on board

Engineered Representations

Two-Level Representation

- store every B-th element of the list in top-level
- in addition to Δ-encoded ids
- store original id for each sampled value in id-list

Binary Search

- binary search on top-level
- scan on list in relevant interval
- example on board

Skipper [MZ96]

- scan top-level and
- go down in Δ-encoded list as soon as possible
- avoids complex binary search control structure
- example on board

Intersection with Randomized Inverted Indices [ST07]

- assume ids are in $[0, U)$ with $U=2^{2 u}$
- ids have to be random (i) more details in paper
- choose tuning parameter B (i) determine average bucket size
- given a list $N=\left[d_{1}, \ldots, d_{n}\right]$ and $k_{N}=\left\lceil\lg \frac{U B}{n}\right\rceil$
- per list, represent ids in
- buckets b_{i}^{N} containing
- partial ids $\left\{d_{j} \bmod 2^{k_{N}}: d_{j} / 2^{k_{N}}=i\right\}$
- due to randomization, average bucket size is between $B / 2$ and B
- elements in buckets can be Δ-encoded

Intersection with Randomized Inverted Indices [ST07]

- assume ids are in $[0, U)$ with $U=2^{2 u}$
- ids have to be random (i) more details in paper
- choose tuning parameter B © determine average bucket size
- given a list $N=\left[d_{1}, \ldots, d_{n}\right]$ and $k_{N}=\left\lceil\lg \frac{U B}{n}\right\rceil$
- per list, represent ids in
- buckets b_{i}^{N} containing
- partial ids $\left\{d_{j} \bmod 2^{k_{N}}: d_{j} / 2^{k_{N}}=i\right\}$
- due to randomization, average bucket size is between $B / 2$ and B
- elements in buckets can be Δ-encoded
- example on board

Intersection with Randomized Inverted Indices [ST07]

- assume ids are in $[0, U)$ with $U=2^{2 u}$
- ids have to be random (i) more details in paper
- choose tuning parameter B © determine average bucket size
- given a list $N=\left\lceil d_{1}, \ldots, d_{n}\right]$ and $k_{N}=\left\lceil\lg \frac{U B}{n}\right\rceil$
- per list, represent ids in
- buckets b_{i}^{N} containing
- partial ids $\left\{d_{j} \bmod 2^{k_{N}}: d_{j} / 2^{k_{N}}=i\right\}$
- due to randomization, average bucket size is between $B / 2$ and B
- elements in buckets can be Δ-encoded
- example on board

Intersection with Randomized Inverted Indices [ST07]

- assume ids are in $[0, U)$ with $U=2^{2 u}$
- ids have to be random (i) more details in paper
- choose tuning parameter B (i) determine average bucket size
- given a list $N=\left[d_{1}, \ldots, d_{n}\right]$ and $k_{N}=\left\lceil\lg \frac{U B}{n}\right\rceil$
- per list, represent ids in
- buckets b_{i}^{N} containing
- partial ids $\left\{d_{j} \bmod 2^{k_{N}}: d_{j} / 2^{k_{N}}=i\right\}$
- due to randomization, average bucket size is between $B / 2$ and B
- elements in buckets can be Δ-encoded
- example on board

Intersection

- for each element $M[i]$ find bucket of N
- can be same bucket as for $M[i-1]$, if so, continue at position of $M[i-1]$ in bucket
(i) continuing is important
- scan bucket until element $\geq M[i]$ is found
- if equal, output $M[i]$

Lemma: Running Time

Intersecting two sorted lists of sizes m and n using a randomized inverted indices requires
$O(m+\min \{n, B m\})$ time.

Conclusion and Outlook

This Lecture

- inverted index
- space efficient encodings of document lists
- efficient intersection algorithms

Linear Time Construction

Conclusion and Outlook

This Lecture

- inverted index
- space efficient encodings of document lists
- efficient intersection algorithms

Next Lecture

- suffix array (full-text index)

Linear Time Construction

Bibliography I

[BS05] Ricardo A. Baeza-Yates and Alejandro Salinger. "Experimental Analysis of a Fast Intersection Algorithm for Sorted Sequences". In: SPIRE. Volume 3772. Lecture Notes in Computer Science. Springer, 2005doi10.1007/11575832_2, pages 13-24.
[Eli75] Peter Elias. "Universal Codeword Sets and Representations of the Integers". In: IEEE Trans. Inf. Theory 21.2 (1975), pages 194-203. DOI: 10.1109/TIT.1975.1055349.
[Gol66] Solomon W. Golomb. "Run-length Encodings (Corresp.)". In: IEEE Trans. Inf. Theory 12.3 (1966), pages 399-401. DOI: 10.1109/TIT. 1966. 1053907.
[MZ96] Alistair Moffat and Justin Zobel. "Self-Indexing Inverted Files for Fast Text Retrieval". In: ACM Trans. Inf. Syst. 14.4 (1996), pages 349-379.
[ST07] Peter Sanders and Frederik Transier. "Intersection in Integer Inverted Indices". In: ALENEX. SIAM, 2007. DOI: 10.1137/1.9781611972870.7.

