

Text Indexing

Lecture 00: Course Overview

Florian Kurpicz

Lectures

- Monday 10:00–11:30 (50.34, -119)
- lecture only

Organizational Matters

Lectures

- Monday 10:00–11:30 (50.34, -119)
- lecture only

Project (mandatory)

- topics will be handed out 08.11.2021
- coding project and small presentation
- 20 % of the final grade

Organizational Matters

Lectures

- Monday 10:00–11:30 (50.34, -119)
- lecture only

Project (mandatory)

- topics will be handed out 08.11.2021
- coding project and small presentation
- 20 % of the final grade

Oral Exam

- 20 minutes
- 80 % of the final grade
- pizza marks content not relevant for exam

2/9

Organizational Matters

Lectures

- Monday 10:00–11:30 (50.34, -119)
- lecture only

Project (mandatory)

- topics will be handed out 08.11.2021
- coding project and small presentation
- 20 % of the final grade

Oral Exam

- 20 minutes
- 80 % of the final grade
- pizza marks content not relevant for exam

Office Hours (Room 210)

- Monday 13:45–14:45 (lecture period)
- by appointment (otherwise)

Materials

Slides

published after the lecture (https://algo2.iti.kit.edu/4198.php)

Videos

■ will be published (with ≥ 1 week delay)

Materials

Slides

published after the lecture (https://algo2.iti.kit.edu/4198.php)

Videos

■ will be published (with ≥ 1 week delay)

Additional Material

- references to literature included
- books
 - Gonzalo Navarro. Compact Data Structures A Practical Approach. Cambridge University Press, 2016. ISBN: 978-1-10-715238-0
 - Enno Ohlebusch. Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements, and Phylogenetic Reconstruction. Oldenbusch Verlag, 2013. ISBN: 978-3000413162
- most likely no script

Content

Fundamentals

- tries
- suffix tree
- suffix array
- longest common prefix array
- Burrows-Wheeler transform (BWT)
- wavelet tree (+ bit vector rank/select)
- FM-index

Compressed Indices

- compressing the BWT and wavelet trees
- Lempel-Ziv 77/78 compression
- LZ compression vs. BWT compression
- compressed suffix trees and suffix arrays
- r-index

Additional Topics

- parallel construction
- different query types

- collection of text
- scanning not feasible

- collection of text
- scanning not feasible
- inverted index (word based)

- collection of text
- scanning not feasible
- inverted index (word based)

- collection of text
- scanning not feasible
- inverted index (word based)

- collection of text
- scanning not feasible
- inverted index (word based)
- phrase search

- collection of text
- scanning not feasible
- inverted index (word based)
- phrase search
- counting queries

GAATGCCAGTCAGCATTAAGGCCAGGC GGAGAGCTCAGGGCAGGTCACGTGGGA **AACTCGCATAGTGAGGGTTATCGCTCG** ACATGTTCGTTGGGCTCTTCACTTCTT CCGACACGAACCTCAGTTAGTTTGTTA CCTACATCCTACCAGAGGTCGCACCTA TGTGCCCCGGTGGTGAGAAGGAGAAGG TGCGGATTTCGTATTTGCAGATGCGGA CTCGTCAGTACTTTCAGAATAACGAAT CATGGCCTGCACGGCAAAATGGCAATG GACGCTTATAATGGACTTCGACATTCG **AACTCGCATAGTGAGGGTTATCGGGTT** ACATGTTCGTTGGGCTCTTCACTCTTC CCGACACGAACCTCAGTTAGTTTAGTT TGTGCCCCGGTGGTGAGAAGGAGAAGG CCTACATCCTACCAGAGGTCGCAGGTC CATGGCCTGCACGGCAAAATGGCAAAT

- collection of text
- scanning not feasible
- inverted index (word based)
- phrase search
- counting queries
- what if there are no "words"

Why Texts?

Text is Everywhere

- Text-based Information
 - Wikipedia W
 - dblp 🥞
 - books **/**
 - news articles Y
 - code **② ☆**
- Very Important in Bioinformatics
 - DNA
 - proteins

Definition: Text

- let Σ be an alphabet
- $T \in \Sigma^*$ is a text
- |T| = n is the length of the string
- T = T[1]T[2]...T[n]

Definition: Text

- let Σ be an alphabet
- $T \in \Sigma^*$ is a text
- |T| = n is the length of the string
- T = T[1]T[2]...T[n]

Definition: Alphabet Types

- constant size alphabet: finite set not depending on n
- integer alphabet: alphabet is $\{1, \dots, \sigma\}$ and fits into constant number of words
- finite alphabets: alphabet of finite size

Definition: Substring, Prefix, and Suffix

Given a text $T = T[1]T[2] \dots T[n]$ of length n:

• T[i..j] = T[i] ... T[j] is called a substring,

а	b	b	а	а	b	b	а	\$

Definition: Substring, Prefix, and Suffix

Given a text $T = T[1]T[2] \dots T[n]$ of length n:

- T[i..j] = T[i] ... T[j] is called a substring, a b b a b b a \$
- T[1..i] is called a prefix, and

Definition: Substring, Prefix, and Suffix

Given a text $T = T[1]T[2] \dots T[n]$ of length n:

- T[i..j] = T[i] ... T[j] is called a substring, a b b a b b a \$
- \blacksquare T[1..i] is called a prefix, and

- \blacksquare T[i..n] is called a suffix of T.
- a b b a a b b a \$

Definition: Substring, Prefix, and Suffix

Given a text $T = T[1]T[2] \dots T[n]$ of length n:

- T[i..j] = T[i] ... T[j] is called a substring,
- T[1..i] is called a prefix, and
 a b b a a b b a \$
- T[i..n] is called a suffix of T.

Sentinel for Simplicity

Given a text T of length n over an alphabet Σ .

- we assume that T[n] = \$ with
- \$ $\notin \Sigma$ and \$ < α for all $\alpha \in \Sigma$

Definition: Substring, Prefix, and Suffix

Given a text $T = T[1]T[2] \dots T[n]$ of length n:

- T[i..j] = T[i]...T[j] is called a substring,
- T[1..i] is called a prefix, and
- T[i..n] is called a **suffix** of T.

Sentinel for Simplicity

Given a text T of length n over an alphabet Σ .

- $lap{1}{2}$ we assume that T[n] = \$ with
- $m{lpha} \ \$
 otin m{\Sigma}$ and \$ < lpha for all $lpha \in m{\Sigma}$

Definition: Substring, Prefix, and Suffix

Given a text $T = T[1]T[2] \dots T[n]$ of length n:

- T[i..j] = T[i] ... T[j] is called a substring,
- a | b | b | a | a | b | b | a | \$
- T[1..i] is called a prefix, and
- \blacksquare T[i..n] is called a suffix of T.

	а	b	b	а	а	b	b	a	\$]
--	---	---	---	---	---	---	---	---	----	---

Sentinel for Simplicity

Given a text T of length n over an alphabet Σ .

- $ule{1}$ we assume that T[n] = \$ with
- otherwise, suffix can be prefix of another suffix

T[1..n] = abbaabba and <math>T[5..n] = abba

Definition: Substring, Prefix, and Suffix

Given a text $T = T[1]T[2] \dots T[n]$ of length n:

- T[i..j] = T[i] ... T[j] is called a substring,
- a | b | b | a | a | b | b | a | \$
- T[1..i] is called a prefix, and
- \blacksquare T[i..n] is called a suffix of T.

а	b	b	a	a	b	b	a	\$	
---	---	---	---	---	---	---	---	----	--

Sentinel for Simplicity

Given a text T of length n over an alphabet Σ .

- $ule{1}$ we assume that T[n] = \$ with
- $m{4} \ \$
 otin \Sigma$ and \$ < lpha for all $lpha \in \Sigma$
- otherwise, suffix can be prefix of another suffix

T[1..n] = abbaabba and <math>T[5..n] = abba

Definition: Prefix-Free

A string is **prefix-free** if no suffix is a prefix of another suffix

PINGO

Bibliography

- [Nav16] Gonzalo Navarro. *Compact Data Structures A Practical Approach*. Cambridge University Press, 2016. ISBN: 978-1-10-715238-0.
- [Ohl13] Enno Ohlebusch. *Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements, and Phylogenetic Reconstruction*. Oldenbusch Verlag, 2013. ISBN: 978-3000413162.
- [Ste+15] Zachary D Stephens., Skylar Y. Lee, Faraz Faghri, Roy H. Campbell, Chengxiang Zhai, Miles J. Efron, Ravishankar Iyer, Michael C. Schatz, Saurabh Sinha, and Gene E. Robinson. "Big Data: Astronomical or Genomical?" In: *PLOS Biology* 13.7 (July 2015), pages 1–11. DOI: 10.1371/journal.pbio.1002195.