
Advanced Data Structures

Lecture 06: Suffix Arrays and String B-Trees

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit 3c6d2d4 compiled at 2022-05-30-09:10

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

https://pingo.scc.kit.edu/084144

2/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

PINGO

https://pingo.scc.kit.edu/084144
https://pingo.scc.kit.edu/084144

Definition: External Memory Model
internal memory of M words

instances of size N ≫ M

unlimited external memory

transfer blocks of size B between memories

measure number of blocks I/Os

scanning N elements: Θ(N/B)

sorting N elements: Θ(N
B log M

B

N
B)

Set of Strings
alphabet Σ of size σ

k strings {s1, . . . , sk} over the alphabet Σ

total size of strings is N =
∑k

i=1 |si |
queries ask for pattern P of length m

3/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

External Memory Model [AV88]

Definition: External Memory Model
internal memory of M words

instances of size N ≫ M

unlimited external memory

transfer blocks of size B between memories

measure number of blocks I/Os

scanning N elements: Θ(N/B)

sorting N elements: Θ(N
B log M

B

N
B)

Set of Strings
alphabet Σ of size σ

k strings {s1, . . . , sk} over the alphabet Σ

total size of strings is N =
∑k

i=1 |si |
queries ask for pattern P of length m

3/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

External Memory Model [AV88]

Given a set S ⊆ Σ⋆ of prefix-free strings, we want to
answer:

is x ∈ Σ⋆ in S

add x /∈ S to S

remove x ∈ S from S

predecessor and
successor of
x ∈ Σ⋆ in S

Definition: Trie
Given a set S = {S1, . . . ,Sk} of prefix-free strings,
a trie is a labeled rooted tree G = (V ,E) with:

1. k leaves

2. ∀Si ∈ S there is a path from the root to a leaf,
such that the concatenation of the labels is Si

3. ∀v ∈ V the labels of the edges (v , ·) are unique

b

e

a

r

e

c

a

b r

S = {bear, bee, cab, car}

4/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

String Dictionary

Given a set S ⊆ Σ⋆ of prefix-free strings, we want to
answer:

is x ∈ Σ⋆ in S

add x /∈ S to S

remove x ∈ S from S

predecessor and
successor of
x ∈ Σ⋆ in S

Definition: Trie
Given a set S = {S1, . . . ,Sk} of prefix-free strings,
a trie is a labeled rooted tree G = (V ,E) with:

1. k leaves

2. ∀Si ∈ S there is a path from the root to a leaf,
such that the concatenation of the labels is Si

3. ∀v ∈ V the labels of the edges (v , ·) are unique

b

e

a

r

e

c

a

b r

S = {bear, bee, cab, car}

4/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

String Dictionary

Given a set S ⊆ Σ⋆ of prefix-free strings, we want to
answer:

is x ∈ Σ⋆ in S

add x /∈ S to S

remove x ∈ S from S

predecessor and
successor of
x ∈ Σ⋆ in S

Definition: Trie
Given a set S = {S1, . . . ,Sk} of prefix-free strings,
a trie is a labeled rooted tree G = (V ,E) with:

1. k leaves

2. ∀Si ∈ S there is a path from the root to a leaf,
such that the concatenation of the labels is Si

3. ∀v ∈ V the labels of the edges (v , ·) are unique

b

e

a

r

e

c

a

b r

S = {bear, bee, cab, car}

4/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

String Dictionary

Representation Query Time (Contains) Space in Words

arrays of variable size O(m · σ) O(N)

arrays of fixed size O(m) O(N · σ)
hash tables O(m) w.h.p. O(N)

balanced search trees O(m · lg σ) O(N)

weight-balanced search trees O(m + lg k) O(N)

two-levels with weight-balanced search trees O(m + lg σ) O(N)

more details in lecture Text Indexing

5/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Theoretical Comparison

Representation Query Time (Contains) Space in Words

arrays of variable size O(m · σ) O(N)

arrays of fixed size O(m) O(N · σ)
hash tables O(m) w.h.p. O(N)

balanced search trees O(m · lg σ) O(N)

weight-balanced search trees O(m + lg k) O(N)

two-levels with weight-balanced search trees O(m + lg σ) O(N)

more details in lecture Text Indexing

5/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Theoretical Comparison

tries have unnecessary nodes

branchless paths can be removed

edge labels can consist of multiple characters

Definition: Compact Trie
A compact trie is a trie where all branchless
paths are replaced by a single edge.

The label of the new edge is the concatenation
of the replaced edges’ labels.

b

e

a

r

c

a

e b r

be ca

ar

6/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Compact Trie

tries have unnecessary nodes

branchless paths can be removed

edge labels can consist of multiple characters

Definition: Compact Trie
A compact trie is a trie where all branchless
paths are replaced by a single edge.

The label of the new edge is the concatenation
of the replaced edges’ labels.

b

e

a

r

c

a

e b r

be ca

ar

6/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Compact Trie

tries have unnecessary nodes

branchless paths can be removed

edge labels can consist of multiple characters

Definition: Compact Trie
A compact trie is a trie where all branchless
paths are replaced by a single edge.

The label of the new edge is the concatenation
of the replaced edges’ labels.

b

e

a

r

c

a

e b r

be ca

ar

6/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Compact Trie

Definition: Suffix Array [GBS92; MM93]
Given a text T of length n, the suffix array (SA) is a
permutation of [1..n], such that for i ≤ j ∈ [1..n]

T [SA[i]..n] ≤ T [SA[j]..n]

Definition: Longest Common Prefix Array
Given a text T of length n and its SA, the LCP-array
is defined as

LCP[i] =


0 i = 1

max{ℓ : T [SA[i]..SA[i] + ℓ) =

T [SA[i − 1]..SA[i − 1] + ℓ)} i ̸= 1

$ a a a a a b b b b b c c
$ b b b b a a b c c a a

a b c c $ b a a a b b
b a a a c $ b b b c
c $ b b a b c a a
a b c b a a $ b
b a a c $ b b
c $ b a b a
a b b a $
b a b $
b $ a
a $
$

1 2 3 4 5 6 7 8 9 10 11 12 13

T a b a b c a b c a b b a $

SA 13 12 1 9 6 3 11 2 10 7 4 8 5

LCP 0 0 1 2 2 5 0 2 1 1 4 0 3

7/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Suffix Array and LCP-Array

Definition: Suffix Array [GBS92; MM93]
Given a text T of length n, the suffix array (SA) is a
permutation of [1..n], such that for i ≤ j ∈ [1..n]

T [SA[i]..n] ≤ T [SA[j]..n]

Definition: Longest Common Prefix Array
Given a text T of length n and its SA, the LCP-array
is defined as

LCP[i] =


0 i = 1

max{ℓ : T [SA[i]..SA[i] + ℓ) =

T [SA[i − 1]..SA[i − 1] + ℓ)} i ̸= 1

$ a a a a a b b b b b c c
$ b b b b a a b c c a a

a b c c $ b a a a b b
b a a a c $ b b b c
c $ b b a b c a a
a b c b a a $ b
b a a c $ b b
c $ b a b a
a b b a $
b a b $
b $ a
a $
$

1 2 3 4 5 6 7 8 9 10 11 12 13

T a b a b c a b c a b b a $

SA 13 12 1 9 6 3 11 2 10 7 4 8 5

LCP 0 0 1 2 2 5 0 2 1 1 4 0 3

7/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Suffix Array and LCP-Array

Definition: Suffix Array [GBS92; MM93]
Given a text T of length n, the suffix array (SA) is a
permutation of [1..n], such that for i ≤ j ∈ [1..n]

T [SA[i]..n] ≤ T [SA[j]..n]

Definition: Longest Common Prefix Array
Given a text T of length n and its SA, the LCP-array
is defined as

LCP[i] =


0 i = 1

max{ℓ : T [SA[i]..SA[i] + ℓ) =

T [SA[i − 1]..SA[i − 1] + ℓ)} i ̸= 1

$ a a a a a b b b b b c c
$ b b b b a a b c c a a

a b c c $ b a a a b b
b a a a c $ b b b c
c $ b b a b c a a
a b c b a a $ b
b a a c $ b b
c $ b a b a
a b b a $
b a b $
b $ a
a $
$

1 2 3 4 5 6 7 8 9 10 11 12 13

T a b a b c a b c a b b a $

SA 13 12 1 9 6 3 11 2 10 7 4 8 5

LCP 0 0 1 2 2 5 0 2 1 1 4 0 3

7/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Suffix Array and LCP-Array

1990

1999

2000

2002

2003

2004

2005

2006

2007

2008

2009

2011

2016

2017

2021

Prefix
Doubling Induced Copying Recursion

[MM]
original

[LS]
qsufsort

[SS]
bpr

[BW]
BWT

[Sew]
1/2 copy

[IT]
A/B copy

[MF]
deep-shallow

[Man]
chains

[Mor]
DivSufSort

[MP]
cache aware

[BK]
diffcover

[Mor,NZC]
SAIS/SADS

[Non]
SACA-K

[LLH]
O(1) space

[Got]
O(1) space

[F]
O(n) tree

[KSB]
DC3

[KSPP]
mod2 split

[HSS]
mod2

[KA]
L/S split

[Na]
succinct

[KJP]
fixed Σ

[NZ]
O(n lg |Σ|) [AN]

SFE-coding

[Bai]
GSACA

[Gre]
libSAIS

Timeline Sequential Suffix Sorting
based on [Bah+19; Bin18; Kur20;
PST07]

darker grey: linear running time

brown: available implementation

Special Mentions
DC3 first O(n) algorithm

O(n) running time and O(1) space
for integer alphabets possible

until 2021: DivSufSort fastest in
practice with O(n lg n) running time

since 2021: libSAIS fastest in
practice with O(n) running time

8/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

1990

1999

2000

2002

2003

2004

2005

2006

2007

2008

2009

2011

2016

2017

2021

Prefix
Doubling Induced Copying Recursion

[MM]
original

[LS]
qsufsort

[SS]
bpr

[BW]
BWT

[Sew]
1/2 copy

[IT]
A/B copy

[MF]
deep-shallow

[Man]
chains

[Mor]
DivSufSort

[MP]
cache aware

[BK]
diffcover

[Mor,NZC]
SAIS/SADS

[Non]
SACA-K

[LLH]
O(1) space

[Got]
O(1) space

[F]
O(n) tree

[KSB]
DC3

[KSPP]
mod2 split

[HSS]
mod2

[KA]
L/S split

[Na]
succinct

[KJP]
fixed Σ

[NZ]
O(n lg |Σ|) [AN]

SFE-coding

[Bai]
GSACA

[Gre]
libSAIS

Timeline Sequential Suffix Sorting
based on [Bah+19; Bin18; Kur20;
PST07]

darker grey: linear running time

brown: available implementation

Special Mentions
DC3 first O(n) algorithm

O(n) running time and O(1) space
for integer alphabets possible

until 2021: DivSufSort fastest in
practice with O(n lg n) running time

since 2021: libSAIS fastest in
practice with O(n) running time

8/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

1990

1999

2000

2002

2003

2004

2005

2006

2007

2008

2009

2011

2016

2017

2021

Prefix
Doubling Induced Copying Recursion

[MM]
original

[LS]
qsufsort

[SS]
bpr

[BW]
BWT

[Sew]
1/2 copy

[IT]
A/B copy

[MF]
deep-shallow

[Man]
chains

[Mor]
DivSufSort

[MP]
cache aware

[BK]
diffcover

[Mor,NZC]
SAIS/SADS

[Non]
SACA-K

[LLH]
O(1) space

[Got]
O(1) space

[F]
O(n) tree

[KSB]
DC3

[KSPP]
mod2 split

[HSS]
mod2

[KA]
L/S split

[Na]
succinct

[KJP]
fixed Σ

[NZ]
O(n lg |Σ|) [AN]

SFE-coding

[Bai]
GSACA

[Gre]
libSAIS

Timeline Sequential Suffix Sorting
based on [Bah+19; Bin18; Kur20;
PST07]

darker grey: linear running time

brown: available implementation

Special Mentions
DC3 first O(n) algorithm

O(n) running time and O(1) space
for integer alphabets possible

until 2021: DivSufSort fastest in
practice with O(n lg n) running time

since 2021: libSAIS fastest in
practice with O(n) running time

8/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

1990

1999

2000

2002

2003

2004

2005

2006

2007

2008

2009

2011

2016

2017

2021

Prefix
Doubling Induced Copying Recursion

[MM]
original

[LS]
qsufsort

[SS]
bpr

[BW]
BWT

[Sew]
1/2 copy

[IT]
A/B copy

[MF]
deep-shallow

[Man]
chains

[Mor]
DivSufSort

[MP]
cache aware

[BK]
diffcover

[Mor,NZC]
SAIS/SADS

[Non]
SACA-K

[LLH]
O(1) space

[Got]
O(1) space

[F]
O(n) tree

[KSB]
DC3

[KSPP]
mod2 split

[HSS]
mod2

[KA]
L/S split

[Na]
succinct

[KJP]
fixed Σ

[NZ]
O(n lg |Σ|) [AN]

SFE-coding

[Bai]
GSACA

[Gre]
libSAIS

Timeline Sequential Suffix Sorting
based on [Bah+19; Bin18; Kur20;
PST07]

darker grey: linear running time

brown: available implementation

Special Mentions
DC3 first O(n) algorithm

O(n) running time and O(1) space
for integer alphabets possible

until 2021: DivSufSort fastest in
practice with O(n lg n) running time

since 2021: libSAIS fastest in
practice with O(n) running time

8/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

best in practice: Juha Kärkkäinen,
Dominik Kempa, Simon J. Puglisi, and
Bella Zhukova. “Engineering External Memory
Induced Suffix Sorting”. In: ALENEX. SIAM,
2017, pages 98–108. DOI:
10.1137/1.9781611974768.8

using induced copying

O(N/B) log2
M
B (N/B) I/Os

9/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Suffix Sorting in External Memory

https://doi.org/10.1137/1.9781611974768.8

Function SeachSA(T ,SA[1..n],P[1..m]):
1 ℓ = 1, r = n + 1
2 while ℓ < r do
3 i = ⌊(ℓ+ r)/2⌋
4 if P > T [SA[i]..SA[i] + m) then
5 ℓ = i + 1
6 else r = i
7 s = ℓ, ℓ = ℓ− 1, r = n
8 while ℓ < r do
9 i = ⌈ℓ+ r/2⌉

10 if P = T [SA[i]..SA[i] + m) then ℓ = i
11 else r = i − 1
12 return [s, r]

pattern P = abc

$ a a a a a b b b b b c c
$ b b b b a a b c c a a

a b c c $ b a a a b b
b a a a c $ b b b c
c $ b b a b c a a
a b c b a a $ b
b a a c $ b b
c $ b a b a
a b b a $
b a b $
b $ a
a $
$

1 2 3 4 5 6 7 8 9 10 11 12 13

T a b a b c a b c a b b a $

SA 13 12 1 9 6 3 11 2 10 7 4 8 5

10/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Pattern Matching with the Suffix Array (1/2)

Function SeachSA(T ,SA[1..n],P[1..m]):
1 ℓ = 1, r = n + 1
2 while ℓ < r do � Find left border
3 i = ⌊(ℓ+ r)/2⌋
4 if P > T [SA[i]..SA[i] + m) then
5 ℓ = i + 1
6 else r = i
7 s = ℓ, ℓ = ℓ− 1, r = n
8 while ℓ < r do
9 i = ⌈ℓ+ r/2⌉

10 if P = T [SA[i]..SA[i] + m) then ℓ = i
11 else r = i − 1
12 return [s, r]

pattern P = abc

$ a a a a a b b b b b c c
$ b b b b a a b c c a a

a b c c $ b a a a b b
b a a a c $ b b b c
c $ b b a b c a a
a b c b a a $ b
b a a c $ b b
c $ b a b a
a b b a $
b a b $
b $ a
a $
$

1 2 3 4 5 6 7 8 9 10 11 12 13

T a b a b c a b c a b b a $

SA 13 12 1 9 6 3 11 2 10 7 4 8 5

10/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Pattern Matching with the Suffix Array (1/2)

Function SeachSA(T ,SA[1..n],P[1..m]):
1 ℓ = 1, r = n + 1
2 while ℓ < r do � Find left border
3 i = ⌊(ℓ+ r)/2⌋
4 if P > T [SA[i]..SA[i] + m) then
5 ℓ = i + 1
6 else r = i
7 s = ℓ, ℓ = ℓ− 1, r = n
8 while ℓ < r do � Find right border
9 i = ⌈ℓ+ r/2⌉

10 if P = T [SA[i]..SA[i] + m) then ℓ = i
11 else r = i − 1
12 return [s, r]

pattern P = abc

$ a a a a a b b b b b c c
$ b b b b a a b c c a a

a b c c $ b a a a b b
b a a a c $ b b b c
c $ b b a b c a a
a b c b a a $ b
b a a c $ b b
c $ b a b a
a b b a $
b a b $
b $ a
a $
$

1 2 3 4 5 6 7 8 9 10 11 12 13

T a b a b c a b c a b b a $

SA 13 12 1 9 6 3 11 2 10 7 4 8 5

10/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Pattern Matching with the Suffix Array (1/2)

Function SeachSA(T ,SA[1..n],P[1..m]):
1 ℓ = 1, r = n + 1
2 while ℓ < r do
3 i = ⌊(ℓ+ r)/2⌋
4 if P > T [SA[i]..SA[i] + m) then

ℓ = i + 1
5 else r = i
6 s = ℓ, ℓ = ℓ− 1, r = n
7 while ℓ < r do
8 i = ⌈ℓ+ r/2⌉
9 if P = T [SA[i]..SA[i] + m) then ℓ = i

10 else r = i − 1
11 return [s, r]

Lemma: Running Time SeachSA
The SeachSA answers counting queries in O(m lg n)
time and reporting queries in O(m lg n + occ) time

Proof (Sketch)
two binary searches on the SA in O(lgn) time

each comparison requires O(m) time

counting in O(1) additional time

reporting in O(occ) additional time

how can this be improved? PINGO

11/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Pattern Matching with the Suffix Array (2/2)

https://kurpicz.org

Function SeachSA(T ,SA[1..n],P[1..m]):
1 ℓ = 1, r = n + 1
2 while ℓ < r do
3 i = ⌊(ℓ+ r)/2⌋
4 if P > T [SA[i]..SA[i] + m) then

ℓ = i + 1
5 else r = i
6 s = ℓ, ℓ = ℓ− 1, r = n
7 while ℓ < r do
8 i = ⌈ℓ+ r/2⌉
9 if P = T [SA[i]..SA[i] + m) then ℓ = i

10 else r = i − 1
11 return [s, r]

Lemma: Running Time SeachSA
The SeachSA answers counting queries in O(m lg n)
time and reporting queries in O(m lg n + occ) time

Proof (Sketch)
two binary searches on the SA in O(lgn) time

each comparison requires O(m) time

counting in O(1) additional time

reporting in O(occ) additional time

how can this be improved? PINGO

11/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Pattern Matching with the Suffix Array (2/2)

https://kurpicz.org

Function SeachSA(T ,SA[1..n],P[1..m]):
1 ℓ = 1, r = n + 1
2 while ℓ < r do
3 i = ⌊(ℓ+ r)/2⌋
4 if P > T [SA[i]..SA[i] + m) then

ℓ = i + 1
5 else r = i
6 s = ℓ, ℓ = ℓ− 1, r = n
7 while ℓ < r do
8 i = ⌈ℓ+ r/2⌉
9 if P = T [SA[i]..SA[i] + m) then ℓ = i

10 else r = i − 1
11 return [s, r]

Lemma: Running Time SeachSA
The SeachSA answers counting queries in O(m lg n)
time and reporting queries in O(m lg n + occ) time

Proof (Sketch)
two binary searches on the SA in O(lgn) time

each comparison requires O(m) time

counting in O(1) additional time

reporting in O(occ) additional time

how can this be improved? PINGO

11/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Pattern Matching with the Suffix Array (2/2)

https://kurpicz.org

Function SeachSA(T ,SA[1..n],P[1..m]):
1 ℓ = 1, r = n + 1
2 while ℓ < r do
3 i = ⌊(ℓ+ r)/2⌋
4 if P > T [SA[i]..SA[i] + m) then

ℓ = i + 1
5 else r = i
6 s = ℓ, ℓ = ℓ− 1, r = n
7 while ℓ < r do
8 i = ⌈ℓ+ r/2⌉
9 if P = T [SA[i]..SA[i] + m) then ℓ = i

10 else r = i − 1
11 return [s, r]

Lemma: Running Time SeachSA
The SeachSA answers counting queries in O(m lg n)
time and reporting queries in O(m lg n + occ) time

Proof (Sketch)
two binary searches on the SA in O(lgn) time

each comparison requires O(m) time

counting in O(1) additional time

reporting in O(occ) additional time

how can this be improved? PINGO

11/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Pattern Matching with the Suffix Array (2/2)

https://kurpicz.org

Function SeachSA(T ,SA[1..n],P[1..m]):
1 ℓ = 1, r = n + 1
2 while ℓ < r do
3 i = ⌊(ℓ+ r)/2⌋
4 if P > T [SA[i]..SA[i] + m) then

ℓ = i + 1
5 else r = i
6 s = ℓ, ℓ = ℓ− 1, r = n
7 while ℓ < r do
8 i = ⌈ℓ+ r/2⌉
9 if P = T [SA[i]..SA[i] + m) then ℓ = i

10 else r = i − 1
11 return [s, r]

Lemma: Running Time SeachSA
The SeachSA answers counting queries in O(m lg n)
time and reporting queries in O(m lg n + occ) time

Proof (Sketch)
two binary searches on the SA in O(lgn) time

each comparison requires O(m) time

counting in O(1) additional time

reporting in O(occ) additional time

how can this be improved? PINGO

11/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Pattern Matching with the Suffix Array (2/2)

https://kurpicz.org

Function SeachSA(T ,SA[1..n],P[1..m]):
1 ℓ = 1, r = n + 1
2 while ℓ < r do
3 i = ⌊(ℓ+ r)/2⌋
4 if P > T [SA[i]..SA[i] + m) then

ℓ = i + 1
5 else r = i
6 s = ℓ, ℓ = ℓ− 1, r = n
7 while ℓ < r do
8 i = ⌈ℓ+ r/2⌉
9 if P = T [SA[i]..SA[i] + m) then ℓ = i

10 else r = i − 1
11 return [s, r]

Lemma: Running Time SeachSA
The SeachSA answers counting queries in O(m lg n)
time and reporting queries in O(m lg n + occ) time

Proof (Sketch)
two binary searches on the SA in O(lgn) time

each comparison requires O(m) time

counting in O(1) additional time

reporting in O(occ) additional time

how can this be improved? PINGO

11/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Pattern Matching with the Suffix Array (2/2)

https://kurpicz.org

Function SeachSA(T ,SA[1..n],P[1..m]):
1 ℓ = 1, r = n + 1
2 while ℓ < r do
3 i = ⌊(ℓ+ r)/2⌋
4 if P > T [SA[i]..SA[i] + m) then

ℓ = i + 1
5 else r = i
6 s = ℓ, ℓ = ℓ− 1, r = n
7 while ℓ < r do
8 i = ⌈ℓ+ r/2⌉
9 if P = T [SA[i]..SA[i] + m) then ℓ = i

10 else r = i − 1
11 return [s, r]

Lemma: Running Time SeachSA
The SeachSA answers counting queries in O(m lg n)
time and reporting queries in O(m lg n + occ) time

Proof (Sketch)
two binary searches on the SA in O(lgn) time

each comparison requires O(m) time

counting in O(1) additional time

reporting in O(occ) additional time

how can this be improved? PINGO

11/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Pattern Matching with the Suffix Array (2/2)

https://kurpicz.org

Function SeachSA(T ,SA[1..n],P[1..m]):
1 ℓ = 1, r = n + 1
2 while ℓ < r do
3 i = ⌊(ℓ+ r)/2⌋
4 if P > T [SA[i]..SA[i] + m) then

ℓ = i + 1
5 else r = i
6 s = ℓ, ℓ = ℓ− 1, r = n
7 while ℓ < r do
8 i = ⌈ℓ+ r/2⌉
9 if P = T [SA[i]..SA[i] + m) then ℓ = i

10 else r = i − 1
11 return [s, r]

Lemma: Running Time SeachSA
The SeachSA answers counting queries in O(m lg n)
time and reporting queries in O(m lg n + occ) time

Proof (Sketch)
two binary searches on the SA in O(lgn) time

each comparison requires O(m) time

counting in O(1) additional time

reporting in O(occ) additional time

how can this be improved? PINGO

11/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Pattern Matching with the Suffix Array (2/2)

https://kurpicz.org

Function SeachSA(T ,SA[1..n],P[1..m]):
1 ℓ = 1, r = n + 1
2 while ℓ < r do
3 i = ⌊(ℓ+ r)/2⌋
4 if P > T [SA[i]..SA[i] + m) then

ℓ = i + 1
5 else r = i
6 s = ℓ, ℓ = ℓ− 1, r = n
7 while ℓ < r do
8 i = ⌈ℓ+ r/2⌉
9 if P = T [SA[i]..SA[i] + m) then ℓ = i

10 else r = i − 1
11 return [s, r]

Lemma: Running Time SeachSA
The SeachSA answers counting queries in O(m lg n)
time and reporting queries in O(m lg n + occ) time

Proof (Sketch)
two binary searches on the SA in O(lgn) time

each comparison requires O(m) time

counting in O(1) additional time

reporting in O(occ) additional time

how can this be improved? PINGO

11/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Pattern Matching with the Suffix Array (2/2)

https://kurpicz.org

remember how many characters of the pattern
and suffix match

identify how long the prefix of the old and next
suffix is

do so using the LCP-array and

range minimum queries

Definition: Range Minimum Queries
Given an array A[1..m), a range minimum query for
a range ℓ ≤ r ∈ [1, n) returns

RMQA(ℓ, r) = argmin{A[k] : k ∈ [ℓ, r]}

lcp(i, j) = max{k : T [i..i + k)

lcp(i, j) = T [j..j+k)} = LCP[RMQLCP(i+1, j)]

RMQs can be answered in O(1) time and

require O(n) space

12/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Speeding Up Pattern Matching with the LCP-Array (1/4)

during binary search matched

λ characters with left border ℓ and

ρ characters with right border r

w.l.o.g. let λ ≥ ρ

middle position i

decide if continue in [ℓ, i] or [i, r]

let ξ = lcp(SA[ℓ],SA[i]) � O(1) time with
RMQs

SA
ℓ i r

λ
ρ

P[1]
P[2]
P[3]

...
P[λ]

P[1]
...

P[ρ]

13/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Speeding Up Pattern Matching with the LCP-Array (2/4)

let ξ = lcp(SA[ℓ],SA[i])

ξ > λ

P[λ+ 1] > T [SA[ℓ] + λ] = T [SA[i] + λ]

ℓ = i without character comparison

ξ = λ

compare as before

ξ < λ

ξ ≥ ρ and P[ξ + 1] < T [SA[i] + ξ]

r = i and ρ = ξ without character comparison

SA
ℓ i r

λ
ρ

P[1]
P[2]
P[3]

...
P[λ]

P[1]
...

P[ρ]

ξ

T [.] = T [.]

ξ

ξ

P[3] ̸= T [.]

14/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Speeding Up Pattern Matching with the LCP-Array (3/4)

let ξ = lcp(SA[ℓ],SA[i])

ξ > λ

P[λ+ 1] > T [SA[ℓ] + λ] = T [SA[i] + λ]

ℓ = i without character comparison

ξ = λ

compare as before

ξ < λ

ξ ≥ ρ and P[ξ + 1] < T [SA[i] + ξ]

r = i and ρ = ξ without character comparison

SA
ℓ i r

λ
ρ

P[1]
P[2]
P[3]

...
P[λ]

P[1]
...

P[ρ]

ξ

T [.] = T [.]

ξ

ξ

P[3] ̸= T [.]

14/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Speeding Up Pattern Matching with the LCP-Array (3/4)

let ξ = lcp(SA[ℓ],SA[i])

ξ > λ

P[λ+ 1] > T [SA[ℓ] + λ] = T [SA[i] + λ]

ℓ = i without character comparison

ξ = λ

compare as before

ξ < λ

ξ ≥ ρ and P[ξ + 1] < T [SA[i] + ξ]

r = i and ρ = ξ without character comparison

SA
ℓ i r

λ
ρ

P[1]
P[2]
P[3]

...
P[λ]

P[1]
...

P[ρ]

ξ

T [.] = T [.]

ξ

ξ

P[3] ̸= T [.]

14/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Speeding Up Pattern Matching with the LCP-Array (3/4)

let ξ = lcp(SA[ℓ],SA[i])

ξ > λ

P[λ+ 1] > T [SA[ℓ] + λ] = T [SA[i] + λ]

ℓ = i without character comparison

ξ = λ

compare as before

ξ < λ

ξ ≥ ρ and P[ξ + 1] < T [SA[i] + ξ]

r = i and ρ = ξ without character comparison

SA
ℓ i r

λ
ρ

P[1]
P[2]
P[3]

...
P[λ]

P[1]
...

P[ρ]

ξ

T [.] = T [.]

ξ

ξ

P[3] ̸= T [.]

14/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Speeding Up Pattern Matching with the LCP-Array (3/4)

let ξ = lcp(SA[ℓ],SA[i])

ξ > λ

P[λ+ 1] > T [SA[ℓ] + λ] = T [SA[i] + λ]

ℓ = i without character comparison

ξ = λ

compare as before

ξ < λ

ξ ≥ ρ and P[ξ + 1] < T [SA[i] + ξ]

r = i and ρ = ξ without character comparison

SA
ℓ i r

λ
ρ

P[1]
P[2]
P[3]

...
P[λ]

P[1]
...

P[ρ]

ξ

T [.] = T [.]

ξ

ξ

P[3] ̸= T [.]

14/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Speeding Up Pattern Matching with the LCP-Array (3/4)

let ξ = lcp(SA[ℓ],SA[i])

ξ > λ

P[λ+ 1] > T [SA[ℓ] + λ] = T [SA[i] + λ]

ℓ = i without character comparison

ξ = λ

compare as before

ξ < λ

ξ ≥ ρ and P[ξ + 1] < T [SA[i] + ξ]

r = i and ρ = ξ without character comparison

SA
ℓ i r

λ
ρ

P[1]
P[2]
P[3]

...
P[λ]

P[1]
...

P[ρ]

ξ

T [.] = T [.]

ξ

ξ

P[3] ̸= T [.]

14/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Speeding Up Pattern Matching with the LCP-Array (3/4)

let ξ = lcp(SA[ℓ],SA[i])

ξ > λ

P[λ+ 1] > T [SA[ℓ] + λ] = T [SA[i] + λ]

ℓ = i without character comparison

ξ = λ

compare as before

ξ < λ

ξ ≥ ρ and P[ξ + 1] < T [SA[i] + ξ]

r = i and ρ = ξ without character comparison

SA
ℓ i r

λ
ρ

P[1]
P[2]
P[3]

...
P[λ]

P[1]
...

P[ρ]

ξ

T [.] = T [.]

ξ

ξ

P[3] ̸= T [.]

14/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Speeding Up Pattern Matching with the LCP-Array (3/4)

let ξ = lcp(SA[ℓ],SA[i])

ξ > λ

P[λ+ 1] > T [SA[ℓ] + λ] = T [SA[i] + λ]

ℓ = i without character comparison

ξ = λ

compare as before

ξ < λ

ξ ≥ ρ and P[ξ + 1] < T [SA[i] + ξ]

r = i and ρ = ξ without character comparison

SA
ℓ i r

λ
ρ

P[1]
P[2]
P[3]

...
P[λ]

P[1]
...

P[ρ]

ξ

T [.] = T [.]

ξ

ξ

P[3] ̸= T [.]

14/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Speeding Up Pattern Matching with the LCP-Array (3/4)

let ξ = lcp(SA[ℓ],SA[i])

ξ > λ

P[λ+ 1] > T [SA[ℓ] + λ] = T [SA[i] + λ]

ℓ = i without character comparison

ξ = λ

compare as before

ξ < λ

ξ ≥ ρ and P[ξ + 1] < T [SA[i] + ξ]

r = i and ρ = ξ without character comparison

SA
ℓ i r

λ
ρ

P[1]
P[2]
P[3]

...
P[λ]

P[1]
...

P[ρ]

ξ

T [.] = T [.]

ξ

ξ

P[3] ̸= T [.]

14/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Speeding Up Pattern Matching with the LCP-Array (3/4)

Lemma:
Using RMQs, SeachSA answers counting queries in
O(m + lg n) time and reporting queries in
O(m + lg n + occ) time

Proof (Sketch)
either halve the range in the suffix array (ξ ̸= λ)
or

compare characters of the pattern (at most m)

15/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Speeding Up Pattern Matching with the LCP-Array (4/4)

Lemma:
Using RMQs, SeachSA answers counting queries in
O(m + lg n) time and reporting queries in
O(m + lg n + occ) time

Proof (Sketch)
either halve the range in the suffix array (ξ ̸= λ)
or

compare characters of the pattern (at most m)

15/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Speeding Up Pattern Matching with the LCP-Array (4/4)

search tree with out-degree in [b, 2b)

works well in external memory

uses separators to find subtree

can be dynamic

who knows B-trees PINGO

example on the board �

From Atomic Values to Strings
strings take more time to compare

load as few strings from disk as possible

16/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

(Recap) B-Trees

https://kurpicz.org

strings are stored in EM

strings are identified by starting positions

B-tree layout for sorted suffixes � identified by
position

at least b = Θ(B) children

tree height O(logB N)

given node v

L(v) is lexicographically smallest string at v

R(v) is lexicographically largest string at v

given node v with children v0, . . . , vk with
k ∈ [b, 2b)

inner: store separators
L(v0),R(v0), . . . , L(vk),R(vk)

leaf: store strings and link leaves

17/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

String B-Tree [FG99]

task: find all occurrences of pattern P

two traversals of String B-Tree

identify leftmost/rightmost occurrence

output all strings in O(occ/B)

at every node with children v0, . . . , vk

binary search for P in L(v0), . . . ,R(vk)

if R(vi) < P ≤ L(vi−1): found
if L(vi) < P ≤ R(vi): continue in vi

Lemma: String B-Tree
Using a String B-tree, a pattern P can be found in a
set of strings with total length N in O(|P|/B logN)
I/Os

Proof (Sketch)
String B-Tree has height logB N

load separators of node: O(1) I/O

load strings for binary search: O(|P|/B) I/Os

total:
O(logB N · log B · |P|/B) = O(|P|/B logN) I/Os

18/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Search in String B-Tree

Patricia Trie
for strings S = {S0, . . . ,Sk−1}
a compact trie where only branching characters
are stored

additionally the string depth is stored

size O(k) for k strings

search requires two steps

first blind search using only trie

blind search can result in false matches

second a comparison with resulting string

use any leaf after matching pattern

0

2 2
e b r

be ca

ar

b c

a

How do Patricia tries help? PINGO

19/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Improving String B-Tree with Patricia Tries (1/2)

https://kurpicz.org

Patricia Trie
for strings S = {S0, . . . ,Sk−1}
a compact trie where only branching characters
are stored

additionally the string depth is stored

size O(k) for k strings

search requires two steps

first blind search using only trie

blind search can result in false matches

second a comparison with resulting string

use any leaf after matching pattern

0

2 2
e b r

be ca

ar

b c

a

How do Patricia tries help? PINGO

19/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Improving String B-Tree with Patricia Tries (1/2)

https://kurpicz.org

Patricia Trie
for strings S = {S0, . . . ,Sk−1}
a compact trie where only branching characters
are stored

additionally the string depth is stored

size O(k) for k strings

search requires two steps

first blind search using only trie

blind search can result in false matches

second a comparison with resulting string

use any leaf after matching pattern

0

2 2
e b r

be ca

ar

b c

a

How do Patricia tries help? PINGO

19/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Improving String B-Tree with Patricia Tries (1/2)

https://kurpicz.org

Patricia Trie
for strings S = {S0, . . . ,Sk−1}
a compact trie where only branching characters
are stored

additionally the string depth is stored

size O(k) for k strings

search requires two steps

first blind search using only trie

blind search can result in false matches

second a comparison with resulting string

use any leaf after matching pattern

0

2 2
e b r

be ca

ar

b c

a

How do Patricia tries help? PINGO

19/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Improving String B-Tree with Patricia Tries (1/2)

https://kurpicz.org

in each inner node build Patricia trie for
separators

if blind search finds leaf w

compute L = lcp(P,w)

let u be first node on root-to-w path with d ≥ L

d = L
find matching children vi and vi+1 of w with

branching characters ci < P[L + 1] < ci+1

example on the board �

d > L
consider next branching character c on path

if P[L + 1] < c continue in leftmost leaf

if P[L + 1] > c continue in rightmost leaf

20/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Improving String B-Tree with Patricia Tries (2/2)

in each inner node build Patricia trie for
separators

if blind search finds leaf w

compute L = lcp(P,w)

let u be first node on root-to-w path with d ≥ L

d = L
find matching children vi and vi+1 of w with

branching characters ci < P[L + 1] < ci+1

example on the board �

d > L
consider next branching character c on path

if P[L + 1] < c continue in leftmost leaf

if P[L + 1] > c continue in rightmost leaf

20/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Improving String B-Tree with Patricia Tries (2/2)

in each inner node build Patricia trie for
separators

if blind search finds leaf w

compute L = lcp(P,w)

let u be first node on root-to-w path with d ≥ L

d = L
find matching children vi and vi+1 of w with

branching characters ci < P[L + 1] < ci+1

example on the board �

d > L
consider next branching character c on path

if P[L + 1] < c continue in leftmost leaf

if P[L + 1] > c continue in rightmost leaf

20/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Improving String B-Tree with Patricia Tries (2/2)

at every node with children v0, . . . , vk

load Patricia trie for L(v0), . . . ,R(vk)

search Patricia trie for w � result of blind search

load one string and compare with P

identify child and continue

How can this be improved even further?
PINGO

Lemma: String B-Tree with PTs
Using a string B-tree with Patricia tries, a pattern P
can be found in a set of strings with total length N
with O(|P|/B logB N) I/Os

Proof (Sketch)
loading PT: O(1) I/Os

blind search: no I/Os

loading one string: O(|P|/B) I/Os

identify child: no I/Os

total O(|P|/B logB N) I/Os

21/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Searching in Improved String B-Tree

https://kurpicz.org

at every node with children v0, . . . , vk

load Patricia trie for L(v0), . . . ,R(vk)

search Patricia trie for w � result of blind search

load one string and compare with P

identify child and continue

How can this be improved even further?
PINGO

Lemma: String B-Tree with PTs
Using a string B-tree with Patricia tries, a pattern P
can be found in a set of strings with total length N
with O(|P|/B logB N) I/Os

Proof (Sketch)
loading PT: O(1) I/Os

blind search: no I/Os

loading one string: O(|P|/B) I/Os

identify child: no I/Os

total O(|P|/B logB N) I/Os

21/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Searching in Improved String B-Tree

https://kurpicz.org

at every node with children v0, . . . , vk

load Patricia trie for L(v0), . . . ,R(vk)

search Patricia trie for w � result of blind search

load one string and compare with P

identify child and continue

How can this be improved even further?
PINGO

Lemma: String B-Tree with PTs
Using a string B-tree with Patricia tries, a pattern P
can be found in a set of strings with total length N
with O(|P|/B logB N) I/Os

Proof (Sketch)
loading PT: O(1) I/Os

blind search: no I/Os

loading one string: O(|P|/B) I/Os

identify child: no I/Os

total O(|P|/B logB N) I/Os

21/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Searching in Improved String B-Tree

https://kurpicz.org

at every node with children v0, . . . , vk

load Patricia trie for L(v0), . . . ,R(vk)

search Patricia trie for w � result of blind search

load one string and compare with P

identify child and continue

How can this be improved even further?
PINGO

Lemma: String B-Tree with PTs
Using a string B-tree with Patricia tries, a pattern P
can be found in a set of strings with total length N
with O(|P|/B logB N) I/Os

Proof (Sketch)
loading PT: O(1) I/Os

blind search: no I/Os

loading one string: O(|P|/B) I/Os

identify child: no I/Os

total O(|P|/B logB N) I/Os

21/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Searching in Improved String B-Tree

https://kurpicz.org

search for pattern in nodes

path in String B-tree p0, p1, p2, . . .

in Patricia tries PTpi compute L = lcp(P,w)

all strings in pi have prefix P[0..L) �

do not compare previously matched characters

load only |P| − L characters at next node

pass L down the String B-tree

Lemma: String B-Tree with PTs and LCP
Using a String B-tree with Patricia tries and passing
down the LCP-value, a pattern P can be found in a
set of strings with total length N in
O(|P|/B + logB N) I/Os

Proof (Sketch)
passing down LCP-value: no I/Os

telescoping sum
∑

i≤h
Li−Li−1

B

h = logB N � height of String B-tree

Li is LCP-value on Level i

L0 = 0 and Lh ≤ |P|
total: O(|P|/B + logB N) I/Os

22/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Improving Search with LCP-Values

search for pattern in nodes

path in String B-tree p0, p1, p2, . . .

in Patricia tries PTpi compute L = lcp(P,w)

all strings in pi have prefix P[0..L) �

do not compare previously matched characters

load only |P| − L characters at next node

pass L down the String B-tree

Lemma: String B-Tree with PTs and LCP
Using a String B-tree with Patricia tries and passing
down the LCP-value, a pattern P can be found in a
set of strings with total length N in
O(|P|/B + logB N) I/Os

Proof (Sketch)
passing down LCP-value: no I/Os

telescoping sum
∑

i≤h
Li−Li−1

B

h = logB N � height of String B-tree

Li is LCP-value on Level i

L0 = 0 and Lh ≤ |P|
total: O(|P|/B + logB N) I/Os

22/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Improving Search with LCP-Values

search for pattern in nodes

path in String B-tree p0, p1, p2, . . .

in Patricia tries PTpi compute L = lcp(P,w)

all strings in pi have prefix P[0..L) �

do not compare previously matched characters

load only |P| − L characters at next node

pass L down the String B-tree

Lemma: String B-Tree with PTs and LCP
Using a String B-tree with Patricia tries and passing
down the LCP-value, a pattern P can be found in a
set of strings with total length N in
O(|P|/B + logB N) I/Os

Proof (Sketch)
passing down LCP-value: no I/Os

telescoping sum
∑

i≤h
Li−Li−1

B

h = logB N � height of String B-tree

Li is LCP-value on Level i

L0 = 0 and Lh ≤ |P|
total: O(|P|/B + logB N) I/Os

22/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Improving Search with LCP-Values

This Lecture
suffix array and LCP array

String B-tree

Advanced Data Structures

static/dynamic

BV
static/dynamic

succ. trees

range min-max tree succ. graphs

Successor RMQ

SA & LCPString B-tree

23/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

[AV88] Alok Aggarwal and Jeffrey Scott Vitter. “The Input/Output Complexity of Sorting and Related
Problems”. In: Commun. ACM 31.9 (1988), pages 1116–1127. DOI: 10.1145/48529.48535.

[Bah+19] Johannes Bahne, Nico Bertram, Marvin Böcker, Jonas Bode, Johannes Fischer, Hermann Foot,
Florian Grieskamp, Florian Kurpicz, Marvin Löbel, Oliver Magiera, Rosa Pink, David Piper, and
Christopher Poeplau. “SACABench: Benchmarking Suffix Array Construction”. In: SPIRE.
Volume 11811. Lecture Notes in Computer Science. Springer, 2019, pages 407–416. DOI:
10.1007/978-3-030-32686-9_29.

[Bin18] Timo Bingmann. “Scalable String and Suffix Sorting: Algorithms, Techniques, and Tools”.
PhD thesis. Karlsruhe Institute of Technology, Germany, 2018. DOI: 10.5445/IR/1000085031.

[FG99] Paolo Ferragina and Roberto Grossi. “The String B-tree: A New Data Structure for String Search in
External Memory and Its Applications”. In: J. ACM 46.2 (1999), pages 236–280. DOI:
10.1145/301970.301973.

24/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Bibliography I

https://doi.org/10.1145/48529.48535
https://doi.org/10.1007/978-3-030-32686-9_29
https://doi.org/10.5445/IR/1000085031
https://doi.org/10.1145/301970.301973

[GBS92] Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. “New Indices for Text: Pat Trees and
Pat Arrays”. In: Information Retrieval: Data Structures & Algorithms. Prentice-Hall, 1992,
pages 66–82.

[Kär+17] Juha Kärkkäinen, Dominik Kempa, Simon J. Puglisi, and Bella Zhukova. “Engineering External
Memory Induced Suffix Sorting”. In: ALENEX. SIAM, 2017, pages 98–108. DOI:
10.1137/1.9781611974768.8.

[Kur20] Florian Kurpicz. “Parallel Text Index Construction”. PhD thesis. Technical University of Dortmund,
Germany, 2020. DOI: 10.17877/DE290R-21114.

[MM93] Udi Manber and Eugene W. Myers. “Suffix Arrays: A New Method for On-Line String Searches”. In:
SIAM J. Comput. 22.5 (1993), pages 935–948. DOI: 10.1137/0222058.

[PST07] Simon J. Puglisi, William F. Smyth, and Andrew Turpin. “A Taxonomy of Suffix Array Construction
Algorithms”. In: ACM Comput. Surv. 39.2 (2007), page 4. DOI: 10.1145/1242471.1242472.

25/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering

Bibliography II

https://doi.org/10.1137/1.9781611974768.8
https://doi.org/10.17877/DE290R-21114
https://doi.org/10.1137/0222058
https://doi.org/10.1145/1242471.1242472

	Appendix

