KIT

Karlsruhe Institute of Technology

Advanced Data Structures

Lecture 05: Predecessor and Range Minimum Query Data Structures
Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License @ ®®: www.creativecommons.org/licenses/by-sa/4.0 | commit 3c6d2d4 compiled at 2022-05-20-21:11

KIT — The Research University in the Helmholtz Association

www.kit.edu


https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

SKIT

Recap

Succinct Planar Graphs (Dynamic) Range Min-Max Trees

® using spanning tree of graph and ® use dynamic balanced binary tree
® special spanning tree of dual graph ® ypdating rang min-max tree similar to bit vector
® both represented succinctly @ additionally, information in nodes has to be
® represent planar graph succinctly updated
® remember whether edge is in spanning tree or ® same dynamic balanced binary tree can be
not used as foundation for dynamic bit vector and

range min-max tree

@ Gonzalo Navarro. Compact Data Structures - A
Practical Approach. Cambridge University
Press, 2016. I1ISBN: 978-1-10-715238-0

217 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering



KIT

Predecessor and Successor

0 1 2 3 4 5 6 7 8 9

® assume universe U = [0, u)
011|2|4]7|10(20|21(22|32

@ letu=2"
a i C
Torted<array of nintegers A C U ® pred(3) = 2
] i <
ogn<we@ésincen<u !pred(10):10
Definition: Predecessor & Successor - SueB|Z8) = B2
Given an array A of nintegers from an universe ) ) i .
and an integer x € U, the predecessor and ® in what time and space can we solve this using
’ bit vectors? %ﬂ% PINGO

successor of x in A are
® pred(A, x) = max{y € A: y < x}
® succ(A,x) =min{y € A: y > x}

317 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering


https://kurpicz.org

KIT

Predecessor and Successor: Simple Solutions
® binary search
® O(log n) query time CONN N B
® no space overhead 011247 |10|20|21|22|32
SR
® using bit vector ® pred(3) =2
® O(1) query time
® u -+ o(u) bits space 111010010010000000001110000000001

® rank;(21) =6
Predecessor of x in Bit Vector ® select;(6) = 10

® z = ranki(x + 2) ® pred(19) = 10
® predecessor is select;(z)

417 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering



Elias-Fano Coding [Eli74; Fan71] (1/3)

Upper Half

® monotonous sequence of [log n| bit integers

517

n integers from universe & = [0, u)

split number in upper and lower halves
upper half: [log n| most significant bits
lower half: [log u — log n| remaining bits

SKIT

Karlsruhe Institute of Technology

Lower Half

® store lower half plain using [log & ] bits
® nlog[4] bits for lower half

01 2 3 4 5 6 7 8 9

011|247 |10{20(21(22|32

not strictly monotonous

let po, - . ., Pn—1 be sequence

use bit vector of length 2n + 1 bits
represent p; with a 1 at position /i + p;
rank and select support requires o(n) bits

2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ

a 0: 000000 ® 10: 001010
| 1: 000001 @ 20: 010100
| 2: 000010 | 21: 010101
| 4: 000100 | 22: 010110
| 7: 000111 @ 30: 100000

Institute of Theoretical Informatics, Algorithm Engineering



KIT

Elias-Fano Coding (2/3)

Access i-th Element

® upper: select; (i) — i

01 2 3 4 5 6 7 8 9
0(1]2(4]7]10[20(21|22|32

® |ower: corresponding bits from lower bit vector

| 0: 000000 ® 10: 001010
Predecessor x
et x' b ﬂ 1 MSB of | 1: 000001 ® 20: 010100
a et x’ be [logn of x
] g , / 7 . | 2: 000010 ® 21: 010101
B p = selech(x") © seleck returns
P o(x') ) ol ) } | 4: 000100 | 22:010110
& scan corresponding values in lower till 2GR 2 TR
predecessor is found ’ |
a ?
%ﬁz‘é";‘;‘sgyoe'emems do we have to scan? upper: 11101101000111000100
28 lower: 0001100011160 60011600

® scanning at most O(log ) elements

6/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering


https://kurpicz.org

Karlsruhe Institute of Technology

Elias-Fano Coding (3/3) ﬂ(IT

Given an array containing n distinct integers from a
universe U = [0, n), the array can be represented
using
us, .
n(2 + Iog[ED bits

while allowing O(1) access time and O(log %)
predecessor/successor time

mnm7 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering



KIT

x-Fast Tries

@ each number has w bits

® build binary tree where leaves represent
numbers ‘ . /O\/1 ?3\ : ‘
® edges are labeled 0 or 1 Q/ \Q Q/ \Q
0/ \1 0/ \1 0/ \1 0/ \1

@ |abels on path from root to leaf are value
bl DA e et et

® also store pointer to min and max in right and ® pointers to min and max are missing

& store nodes in hash tables with bit prefix as key

left subtree ® tree most likely not complete
® |eaves are stored in doubly linked list

® using perfect hashing on each level requires
O(wn) space

817 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering



x-Fast Tries: Queries A“(IT

Karlsruhe Institute of Technology

® traversing tree requires O(w) time

® using binary search on levels requires O(log w)
time

& if value not found go to min or max depending
on query

a f value is found use doubly linked list to find
predecessor or successor

& example on the board

917 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering



KIT

y- Fast Tr i eS Karlsruhe Institute of Technology

u x-fast trie requires O(wn) space ® example on the board £ -
® group w consecutive objects into one block B;

m for each block B; choose maximum m; as Dynamic y-Fast Trie
representative ® use cuckoo hashing

@ build x-fast trie for representatives
@ store blocks in balanced binary trees

representative does not have to be maximum
any element separating groups suffices
merge and split blocks that are too small/too big

a
a
a
® query time only expected

u x-fast trie requires O(n) space

® search in x-fast trie requires O(log log ;) time

& search in balanced binary tree requires
O(log w) = O(log log n) time

1017 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering



KIT

Range Minimum Queries

0 1 2 3 4 5 6 7 8 9

® array of nintegers
812[5|1]|9|11|10|20(22| 4

® not necessarily sorted

= rmq(0,9) =3
® rmq(0,2) =1
® rmq(4,8) =4

Definition: Range Minimum Queries
Given an array of A of nintegers

rmq(A, s, e) = arg min A[/]
s<i<e
® paive in O(1) time
returns the position of minimum in A[s, ¢] = how much space does a naive O(1)-time
solution need Zﬁ% PINGO

® using O(n?) space ® rmq(s, e) = M|[s][e]

117 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering


https://kurpicz.org

Ui

Range Minimum Queries in O(1) Time and O(nlog n) Space &=nuress,

® instead of storing all solutions Construction

® store solutions for intervals of length 2% for
every kK M[x][€] = rmq(A, x,x +2° — 1)
a M[0..n)[0..|log n|) = argmin{A[i]: i € [x,x +2°)}
. = argmin{A[i]: i € {rmq(A, x,x + 27" — 1),
AT

® query rmq(A, s, e) is answered using two arg min{A[i]: i € {M[x][¢ — 1],

subqueries
\ - MEx-+2'][e - 13}
® letl = |log(e —s—1)]
® m =rmq(A,s,s+2¢—1)and
mo = rmq(A, e — LR () e) ® how much time do we need to fill the table?

EgiE
Al #3 PINGO
® dynamic programming in O(nlog n) time

® rmqg(A, s, e) = arg minme{m17mz}

12117 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering


https://kurpicz.org

Ui

Range Minimum Queries in O(1) Time and O(n) Space (1/2) S

1317

a divide A into blocks of size s = &2

blocks B;, . .

4
., Bmwith m = [n/s]

query rmq(A, s, e) is answered using at most
three subqueries

one query spanning multiple block

at most two queries within a block each

example on the board £ -J

2022-05-20

Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ

log n Query Spanning Blocks

use array B containing minimum within each
block

B has m entries
use O(nlog n data structure for B

a O(mlog m) = O(’;7 log ’;’) =

O(jog7 108 1g7) = O(n)
use additional array B’ storing position of
minimum in each block

for queries within block use Cartesian trees

Institute of Theoretical Informatics, Algorithm Engineering



KIT

Cartesian Trees (1/2)
Given an array A of length n, a Cartesian tree C(A) ® scan array from left to right
® root r is labeled with a following rightmost path from leaf to root till
x = argmin{A[i]: i € [0,n)} element can be inserted
® everything below becomes left child of new

@ |eft and right children of r are Cartesian trees

C(A[0,x)) and C(A[x + 1, n)) node

® each node is removed at most once from the
rightmost path

® moving subtree to left child in constant time

A Cartesian tree for an array of size n can be gives O(n) construction time
computed in O(n) time
& example on the board

1417 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering



KIT

Cartesian Trees (2/2)

Given two arrays A and B of length n with equal
Cartesian trees, then

rmq(A, s, e) = rmq(B, s, e)

foral0 <s<e<n

& proof by induction over the size of the array
® if the array has size one, this is true

® assuming this is correct for arrays of size n,
showing this for arrays of size n + 1 uses
recursive definition of Cartesian trees

1517 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering



KIT

Range Minimum Queries in O(1) Time and O(n) Space (2/2) &

Query Within a Block

® consider every possible Cartesian tree for
arrays of size s = "’—‘;—”

® free can be represented using 2s + 1 bits

® store bit representation of Cartesian tree for
every block

& for every possible Cartesian tree and every start
and end position store position of minimum

w O(2%t1.5.5) = O(y/nlog? n) = O(n) space

16/17 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering



KIT

Conclusion and Outlook

This Lecture Advanced Data Structures

® successor and predecessor data structures
. Successorl RMQ |
® range minimum query data structures _ _
static/dynamic static/dynamic
BV succ. trees

range min-max tree | succ. graphs |

1717 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering



KIT

Bibliography |

[Eli74]  Peter Elias. “Efficient Storage and Retrieval by Content and Address of Static Files”. In: J. ACM 21.2
(1974), pages 246—260. DOI: 10.1145/321812.321820.

[Fan71] Robert Mario Fano. On the Number of Bits Required to Implement an Associative Memory. 1971.

[Nav16] Gonzalo Navarro. Compact Data Structures - A Practical Approach. Cambridge University Press,
2016. ISBN: 978-1-10-715238-0.

1817 2022-05-20 Florian Kurpicz | Advanced Data Structures | 05 Predecessor & RMQ Institute of Theoretical Informatics, Algorithm Engineering


https://doi.org/10.1145/321812.321820

	Appendix

