
Faster Wavelet Tree Queries

Data Compression Conference (DCC 2024)

Matteo Ceregini, Florian Kurpicz, and Rossano Venturini

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit 567313f compiled at 2024-03-20-18:34

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a c c e s s a n d s e l e c t

ranks(10) = 3
selects(3) = 9

Applications
compression

computational geometry

pattern matching

. . .

2/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Operations on Sequences

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a c c e s s a n d s e l e c t

ranks(10) = 3

selects(3) = 9

Applications
compression

computational geometry

pattern matching

. . .

2/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Operations on Sequences

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a c c e s s a n d s e l e c t

ranks(10) = 3
selects(3) = 9

Applications
compression

computational geometry

pattern matching

. . .

2/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Operations on Sequences

accessandselect

000011010101001

acceadeec

000101110

accac

01101
edee

1011

ssnslt

110101

nl

10

ssst

0001

de-facto standard for access, rank, and queries

O(log σ) query time

require ⌈H0(T)⌉n(1 + o(1)) bits of space

Previous Work
lots of work on construction [Bab+15; CNP15;
DFK20; Din+21; Din+23; EK19; Fue+17; Kan18;
LSB17; MNV16; Shu20]

little work on queries [CNP15; Fer+07]

Faster Queries @ DCC’24
“Faster Wavelet Tree Queries ” (this paper)

“Another Virtue of Wavelet Forests” (poster)

3/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Wavelet Trees [GGV03]

accessandselect

000011010101001

acceadeec

000101110

accac

01101
edee

1011

ssnslt

110101

nl

10

ssst

0001

de-facto standard for access, rank, and queries

O(log σ) query time

require ⌈H0(T)⌉n(1 + o(1)) bits of space

Previous Work
lots of work on construction [Bab+15; CNP15;
DFK20; Din+21; Din+23; EK19; Fue+17; Kan18;
LSB17; MNV16; Shu20]

little work on queries [CNP15; Fer+07]

Faster Queries @ DCC’24
“Faster Wavelet Tree Queries ” (this paper)

“Another Virtue of Wavelet Forests” (poster)

3/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Wavelet Trees [GGV03]

accessandselect

000011010101001

acceadeecssnslt

000101110110101

accacnledeessst

011011010110001

Z[0] = 9

Z[1] = 7

Z[2] = 7

alternative representation of wavelet trees

“everything” known for trees applies to matrices

Construction
bit vector on each level

on k -th level symbols represented by k -th MSB

stably sort sequence using written bit as key

continue with next level

store number of zeros on each level in Z

4/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Wavelet Trees Matrices [CNP15]

accessandselect

000011010101001

acceadeecssnslt

000101110110101

accacnledeessst

011011010110001

Z[0] = 9

Z[1] = 7

Z[2] = 7

alternative representation of wavelet trees

“everything” known for trees applies to matrices

Construction
bit vector on each level

on k -th level symbols represented by k -th MSB

stably sort sequence using written bit as key

continue with next level

store number of zeros on each level in Z

4/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Wavelet Trees Matrices [CNP15]

accessandselect

000011010101001

acceadeecssnslt

000101110110101

accacnledeessst

011011010110001

Z[0] = 9

Z[1] = 7

Z[2] = 7

rankα(i)
r0 = i, b0 = 0
for k = 0, . . . , ℓ do
αk = (α >> (ℓ− 1 − k)) & 1
offset = αk ∗ Z [k]
bk+1 = bv [k].rankαk (bk) + offset

rk+1 = bv [k].rankαk (rk) + offset

return rℓ+1 − bℓ+1

Cache Misses on Each Level
binary rank and select queries are expensive

rank/select data structures not in cache

5/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Rank Queries

accessandselect

000011010101001

acceadeecssnslt

000101110110101

accacnledeessst

011011010110001

Z[0] = 9

Z[1] = 7

Z[2] = 7

rankα(i)
r0 = i, b0 = 0
for k = 0, . . . , ℓ do
αk = (α >> (ℓ− 1 − k)) & 1
offset = αk ∗ Z [k]
bk+1 = bv [k].rankαk (bk) + offset

rk+1 = bv [k].rankαk (rk) + offset

return rℓ+1 − bℓ+1

Cache Misses on Each Level
binary rank and select queries are expensive

rank/select data structures not in cache

5/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Rank Queries

use quad vectors instead of bit vectors

space overhead 3.51%⇝ 6.25%

rank possible with 2.41% space overhead

⌈log σ/2⌉ levels (uncompressed)

halve cache misses for rank/select data
structures

more for rank queries in the tree/matrix

path through tree/matrix known at query time

accessandselect

000011010101001
000111001110101

accacnledeessst

011011010110001

C0 = [0, 5, 9, 11]

C1 = [0, 7]

Ci [α] number elements < α in level i

6/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

4-Ary Wavelet Matrices

use quad vectors instead of bit vectors

space overhead 3.51%⇝ 6.25%

rank possible with 2.41% space overhead

⌈log σ/2⌉ levels (uncompressed)

halve cache misses for rank/select data
structures

more for rank queries in the tree/matrix

path through tree/matrix known at query time

accessandselect

000011010101001
000111001110101

accacnledeessst

011011010110001

C0 = [0, 5, 9, 11]

C1 = [0, 7]

Ci [α] number elements < α in level i

6/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

4-Ary Wavelet Matrices

Definition. Let Q[1, n] be a quad vector and ϵ ∈ N.
The RAA for a position i and a symbol α ∈ [0, 3] is

rankα(i) ∈ [rank≈
α (i), rank≈

α (i) + ϵ).

Lemma. The RAA for quad vectors can be solved in
constant time using Θ(n/ϵ) bits of space.

Lemma. A RAA data structure for quad vectors
requires Ω(n/ϵ) bits of space.

Proof (Sketch). Split quad vector Q[1..n] into blocks
of size ϵ/2.

Q

Bit vectors Bα[1..⌈2n/ϵ⌉] mark blocks containing
positions with rankα(i) = 0 mod ϵ/2 for α ∈ [0, 3].
Bα 1 1 1 1 1

to compute rank≈
α (i)

let j = ⌊2i/ϵ⌋ and k = Bα.rank1(j)

rankα(j · ϵ/2) ∈ [k · ϵ/2, k · ϵ/2 + ϵ/2)

rankα(i) ∈ [k · ϵ/2, k · ϵ/2 + ϵ)

rank≈
α (i) = k · ϵ/2

7/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Rank with Additive Approximation (RAA)

Definition. Let Q[1, n] be a quad vector and ϵ ∈ N.
The RAA for a position i and a symbol α ∈ [0, 3] is

rankα(i) ∈ [rank≈
α (i), rank≈

α (i) + ϵ).

Lemma. The RAA for quad vectors can be solved in
constant time using Θ(n/ϵ) bits of space.

Lemma. A RAA data structure for quad vectors
requires Ω(n/ϵ) bits of space.

Proof (Sketch). Split quad vector Q[1..n] into blocks
of size ϵ/2.

Q

Bit vectors Bα[1..⌈2n/ϵ⌉] mark blocks containing
positions with rankα(i) = 0 mod ϵ/2 for α ∈ [0, 3].
Bα 1 1 1 1 1

to compute rank≈
α (i)

let j = ⌊2i/ϵ⌋ and k = Bα.rank1(j)

rankα(j · ϵ/2) ∈ [k · ϵ/2, k · ϵ/2 + ϵ/2)

rankα(i) ∈ [k · ϵ/2, k · ϵ/2 + ϵ)

rank≈
α (i) = k · ϵ/2

7/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Rank with Additive Approximation (RAA)

Definition. Let Q[1, n] be a quad vector and ϵ ∈ N.
The RAA for a position i and a symbol α ∈ [0, 3] is

rankα(i) ∈ [rank≈
α (i), rank≈

α (i) + ϵ).

Lemma. The RAA for quad vectors can be solved in
constant time using Θ(n/ϵ) bits of space.

Lemma. A RAA data structure for quad vectors
requires Ω(n/ϵ) bits of space.

Proof (Sketch). Split quad vector Q[1..n] into blocks
of size ϵ/2.

Q

Bit vectors Bα[1..⌈2n/ϵ⌉] mark blocks containing
positions with rankα(i) = 0 mod ϵ/2 for α ∈ [0, 3].
Bα 1 1 1 1 1

to compute rank≈
α (i)

let j = ⌊2i/ϵ⌋ and k = Bα.rank1(j)

rankα(j · ϵ/2) ∈ [k · ϵ/2, k · ϵ/2 + ϵ/2)

rankα(i) ∈ [k · ϵ/2, k · ϵ/2 + ϵ)

rank≈
α (i) = k · ϵ/2

7/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Rank with Additive Approximation (RAA)

Definition. Let Q[1, n] be a quad vector and ϵ ∈ N.
The RAA for a position i and a symbol α ∈ [0, 3] is

rankα(i) ∈ [rank≈
α (i), rank≈

α (i) + ϵ).

Lemma. The RAA for quad vectors can be solved in
constant time using Θ(n/ϵ) bits of space.

Lemma. A RAA data structure for quad vectors
requires Ω(n/ϵ) bits of space.

Proof (Sketch). Split quad vector Q[1..n] into blocks
of size ϵ/2.

Q

Bit vectors Bα[1..⌈2n/ϵ⌉] mark blocks containing
positions with rankα(i) = 0 mod ϵ/2 for α ∈ [0, 3].
Bα 1 1 1 1 1

to compute rank≈
α (i)

let j = ⌊2i/ϵ⌋ and k = Bα.rank1(j)

rankα(j · ϵ/2) ∈ [k · ϵ/2, k · ϵ/2 + ϵ/2)

rankα(i) ∈ [k · ϵ/2, k · ϵ/2 + ϵ)

rank≈
α (i) = k · ϵ/2

7/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Rank with Additive Approximation (RAA)

Definition. Let Q[1, n] be a quad vector and ϵ ∈ N.
The RAA for a position i and a symbol α ∈ [0, 3] is

rankα(i) ∈ [rank≈
α (i), rank≈

α (i) + ϵ).

Lemma. The RAA for quad vectors can be solved in
constant time using Θ(n/ϵ) bits of space.

Lemma. A RAA data structure for quad vectors
requires Ω(n/ϵ) bits of space.

Proof (Sketch). Split quad vector Q[1..n] into blocks
of size ϵ/2.

Q

Bit vectors Bα[1..⌈2n/ϵ⌉] mark blocks containing
positions with rankα(i) = 0 mod ϵ/2 for α ∈ [0, 3].
Bα 1 1 1 1 1

to compute rank≈
α (i)

let j = ⌊2i/ϵ⌋ and k = Bα.rank1(j)

rankα(j · ϵ/2) ∈ [k · ϵ/2, k · ϵ/2 + ϵ/2)

rankα(i) ∈ [k · ϵ/2, k · ϵ/2 + ϵ)

rank≈
α (i) = k · ϵ/2

7/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Rank with Additive Approximation (RAA)

Definition. Let Q[1, n] be a quad vector and ϵ ∈ N.
The RAA for a position i and a symbol α ∈ [0, 3] is

rankα(i) ∈ [rank≈
α (i), rank≈

α (i) + ϵ).

Lemma. The RAA for quad vectors can be solved in
constant time using Θ(n/ϵ) bits of space.

Lemma. A RAA data structure for quad vectors
requires Ω(n/ϵ) bits of space.

Proof (Sketch). Split quad vector Q[1..n] into blocks
of size ϵ/2.

Q

Bit vectors Bα[1..⌈2n/ϵ⌉] mark blocks containing
positions with rankα(i) = 0 mod ϵ/2 for α ∈ [0, 3].
Bα 1 1 1 1 1

to compute rank≈
α (i)

let j = ⌊2i/ϵ⌋ and k = Bα.rank1(j)

rankα(j · ϵ/2) ∈ [k · ϵ/2, k · ϵ/2 + ϵ/2)

rankα(i) ∈ [k · ϵ/2, k · ϵ/2 + ϵ)

rank≈
α (i) = k · ϵ/2

7/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Rank with Additive Approximation (RAA)

Definition. Let Q[1, n] be a quad vector and ϵ ∈ N.
The RAA for a position i and a symbol α ∈ [0, 3] is

rankα(i) ∈ [rank≈
α (i), rank≈

α (i) + ϵ).

Lemma. The RAA for quad vectors can be solved in
constant time using Θ(n/ϵ) bits of space.

Lemma. A RAA data structure for quad vectors
requires Ω(n/ϵ) bits of space.

Proof (Sketch). Split quad vector Q[1..n] into blocks
of size ϵ/2.

Q

Bit vectors Bα[1..⌈2n/ϵ⌉] mark blocks containing
positions with rankα(i) = 0 mod ϵ/2 for α ∈ [0, 3].
Bα 1 1 1 1 1

to compute rank≈
α (i)

let j = ⌊2i/ϵ⌋ and k = Bα.rank1(j)

rankα(j · ϵ/2) ∈ [k · ϵ/2, k · ϵ/2 + ϵ/2)

rankα(i) ∈ [k · ϵ/2, k · ϵ/2 + ϵ)

rank≈
α (i) = k · ϵ/2

7/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Rank with Additive Approximation (RAA)

Definition. Let Q[1, n] be a quad vector and ϵ ∈ N.
The RAA for a position i and a symbol α ∈ [0, 3] is

rankα(i) ∈ [rank≈
α (i), rank≈

α (i) + ϵ).

Lemma. The RAA for quad vectors can be solved in
constant time using Θ(n/ϵ) bits of space.

Lemma. A RAA data structure for quad vectors
requires Ω(n/ϵ) bits of space.

Proof (Sketch). Split quad vector Q[1..n] into blocks
of size ϵ/2.

Q

Bit vectors Bα[1..⌈2n/ϵ⌉] mark blocks containing
positions with rankα(i) = 0 mod ϵ/2 for α ∈ [0, 3].
Bα 1 1 1 1 1

to compute rank≈
α (i)

let j = ⌊2i/ϵ⌋ and k = Bα.rank1(j)

rankα(j · ϵ/2) ∈ [k · ϵ/2, k · ϵ/2 + ϵ/2)

rankα(i) ∈ [k · ϵ/2, k · ϵ/2 + ϵ)

rank≈
α (i) = k · ϵ/2

7/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Rank with Additive Approximation (RAA)

Definition. Let Q[1, n] be a quad vector and ϵ ∈ N.
The RAA for a position i and a symbol α ∈ [0, 3] is

rankα(i) ∈ [rank≈
α (i), rank≈

α (i) + ϵ).

Lemma. The RAA for quad vectors can be solved in
constant time using Θ(n/ϵ) bits of space.

Lemma. A RAA data structure for quad vectors
requires Ω(n/ϵ) bits of space.

Proof (Sketch). Split quad vector Q[1..n] into blocks
of size ϵ/2.

Q

Bit vectors Bα[1..⌈2n/ϵ⌉] mark blocks containing
positions with rankα(i) = 0 mod ϵ/2 for α ∈ [0, 3].
Bα 1 1 1 1 1

to compute rank≈
α (i)

let j = ⌊2i/ϵ⌋ and k = Bα.rank1(j)

rankα(j · ϵ/2) ∈ [k · ϵ/2, k · ϵ/2 + ϵ/2)

rankα(i) ∈ [k · ϵ/2, k · ϵ/2 + ϵ)

rank≈
α (i) = k · ϵ/2

7/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Rank with Additive Approximation (RAA)

Definition. Let Q[1, n] be a quad vector and ϵ ∈ N.
The RAA for a position i and a symbol α ∈ [0, 3] is

rankα(i) ∈ [rank≈
α (i), rank≈

α (i) + ϵ).

Lemma. The RAA for quad vectors can be solved in
constant time using Θ(n/ϵ) bits of space.

Lemma. A RAA data structure for quad vectors
requires Ω(n/ϵ) bits of space.

Proof (Sketch). Split quad vector Q[1..n] into blocks
of size ϵ/2.

Q

Bit vectors Bα[1..⌈2n/ϵ⌉] mark blocks containing
positions with rankα(i) = 0 mod ϵ/2 for α ∈ [0, 3].
Bα 1 1 1 1 1

to compute rank≈
α (i)

let j = ⌊2i/ϵ⌋ and k = Bα.rank1(j)

rankα(j · ϵ/2) ∈ [k · ϵ/2, k · ϵ/2 + ϵ/2)

rankα(i) ∈ [k · ϵ/2, k · ϵ/2 + ϵ)

rank≈
α (i) = k · ϵ/2

7/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Rank with Additive Approximation (RAA)

Problem
let rk be the rank on the k -th level

RAA does not guarantee that rk ∈ [r≈k , r≈k + ϵ)

we can only compute rank≈
αk
(r≈k−1)

error could be up to (k − 1)ϵ

Solution
store position where rankα(i) = 0 mod ϵ/2
Bα 1 1 1 1 1

O(log ϵ) bits per position (offset)

store in Dk,α

use rank/select on bit vector to access offset

let dk−1 be successor of rk−1 in Dk,αk

∆ = min(dk−1 − r≈k−1, ϵ− 1)

r≈k = rankαk (dk−1)−∆

Lemma. At any level k , we have rk ∈ [r≈k , r≈k + ϵ).

requires Θ((n/ϵ log σ) log ϵ) bits of space

problematic if predictor does not fit into cache

use hierarchy of predictors

8/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Predicting Cache Lines in the Wavelet Tree

Problem
let rk be the rank on the k -th level

RAA does not guarantee that rk ∈ [r≈k , r≈k + ϵ)

we can only compute rank≈
αk
(r≈k−1)

error could be up to (k − 1)ϵ

Solution
store position where rankα(i) = 0 mod ϵ/2
Bα 1 1 1 1 1

O(log ϵ) bits per position (offset)

store in Dk,α

use rank/select on bit vector to access offset

let dk−1 be successor of rk−1 in Dk,αk

∆ = min(dk−1 − r≈k−1, ϵ− 1)

r≈k = rankαk (dk−1)−∆

Lemma. At any level k , we have rk ∈ [r≈k , r≈k + ϵ).

requires Θ((n/ϵ log σ) log ϵ) bits of space

problematic if predictor does not fit into cache

use hierarchy of predictors

8/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Predicting Cache Lines in the Wavelet Tree

Problem
let rk be the rank on the k -th level

RAA does not guarantee that rk ∈ [r≈k , r≈k + ϵ)

we can only compute rank≈
αk
(r≈k−1)

error could be up to (k − 1)ϵ

Solution
store position where rankα(i) = 0 mod ϵ/2
Bα 1 1 1 1 1

O(log ϵ) bits per position (offset)

store in Dk,α

use rank/select on bit vector to access offset

let dk−1 be successor of rk−1 in Dk,αk

∆ = min(dk−1 − r≈k−1, ϵ− 1)

r≈k = rankαk (dk−1)−∆

Lemma. At any level k , we have rk ∈ [r≈k , r≈k + ϵ).

requires Θ((n/ϵ log σ) log ϵ) bits of space

problematic if predictor does not fit into cache

use hierarchy of predictors

8/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Predicting Cache Lines in the Wavelet Tree

Problem
let rk be the rank on the k -th level

RAA does not guarantee that rk ∈ [r≈k , r≈k + ϵ)

we can only compute rank≈
αk
(r≈k−1)

error could be up to (k − 1)ϵ

Solution
store position where rankα(i) = 0 mod ϵ/2
Bα 1 1 1 1 1

O(log ϵ) bits per position (offset)

store in Dk,α

use rank/select on bit vector to access offset

let dk−1 be successor of rk−1 in Dk,αk

∆ = min(dk−1 − r≈k−1, ϵ− 1)

r≈k = rankαk (dk−1)−∆

Lemma. At any level k , we have rk ∈ [r≈k , r≈k + ϵ).

requires Θ((n/ϵ log σ) log ϵ) bits of space

problematic if predictor does not fit into cache

use hierarchy of predictors

8/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Predicting Cache Lines in the Wavelet Tree

Problem
let rk be the rank on the k -th level

RAA does not guarantee that rk ∈ [r≈k , r≈k + ϵ)

we can only compute rank≈
αk
(r≈k−1)

error could be up to (k − 1)ϵ

Solution
store position where rankα(i) = 0 mod ϵ/2
Bα 1 1 1 1 1

O(log ϵ) bits per position (offset)

store in Dk,α

use rank/select on bit vector to access offset

let dk−1 be successor of rk−1 in Dk,αk

∆ = min(dk−1 − r≈k−1, ϵ− 1)

r≈k = rankαk (dk−1)−∆

Lemma. At any level k , we have rk ∈ [r≈k , r≈k + ϵ).

requires Θ((n/ϵ log σ) log ϵ) bits of space

problematic if predictor does not fit into cache

use hierarchy of predictors

8/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Predicting Cache Lines in the Wavelet Tree

∆ and Dk,α not necessary

error always small enough for σ up to 256

prefetch more cache lines

use two levels of predictors

first level with ϵ = 2048

second level with ϵ = 256

help to prefetch blocks and super blocks

Experimental Setup
AMD EPYC 7713

64 KB L1I and 64 KB L1D per core
512 KB L2I+D per core
256 MB L3I+D (32 MB per 8 cores CCX)

2 TB DDR4 RAM

Ubuntu 20.04.3 LTS kernel version 5.4.0-155

C++: GCC 11.1.0 (-03 -march=native)

Rust: cargo build -release

9/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Practical Implementations and Experiments

∆ and Dk,α not necessary

error always small enough for σ up to 256

prefetch more cache lines

use two levels of predictors

first level with ϵ = 2048

second level with ϵ = 256

help to prefetch blocks and super blocks

Experimental Setup
AMD EPYC 7713

64 KB L1I and 64 KB L1D per core
512 KB L2I+D per core
256 MB L3I+D (32 MB per 8 cores CCX)

2 TB DDR4 RAM

Ubuntu 20.04.3 LTS kernel version 5.4.0-155

C++: GCC 11.1.0 (-03 -march=native)

Rust: cargo build -release

9/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Practical Implementations and Experiments

15 20 25 30

0

0.5

1

1.5

L1 L2 L3⋆ L3

input size (log n B)

ra
nk

la
te

nc
y

(µ
s/

qu
er

y)

English

15 20 25 30
0

0.5

1

1.5

2 L1 L2 L3⋆ L3

input size (log n B)

Common Crawl

15 20 25 30
0

0.2

0.4

0.6

L1 L2 L3⋆ L3

input size (log n B)

DNA

pasta_wm sdsl_fbb sdsl_wm sucds QWMpfs
256

QWM256

10/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Experimental Evaluation (Latency)

This Paper
up to 3 times faster wavelet tree queries

predictive model for rank queries

What’s Next
compressed wavelet trees

use predictive model for other data structures

Check It Out
https://github.com/rossanoventurini/qwt

This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 882500) and
innovation programme (grant agreement No. 882500), by the PNRR
ECS00000017 Tuscany Health Ecosystem Spoke 6 “Precision
medicine & personalized healthcare”, by the “Algorithms, Data
Structures and Combinatorics for Machine Learning” (MIUR-PRIN
2017), and by the “Algorithmic Problems and Machine Learning”
(MIUR-PRIN 2022).

11/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Future Work

https://github.com/rossanoventurini/qwt

15 20 25 30
0

5

10

L1 L2 L3⋆ L3

input size (log n B)

ra
nk

th
ro

ug
hp

ut
(q

ue
rie

s/
µ

s)

English

15 20 25 30
0

5

10 L1 L2 L3⋆ L3

input size (log n B)

Common Crawl

15 20 25 30
0

10

20

30

40 L1 L2 L3⋆ L3

input size (log n B)

DNA

pasta_wm sdsl_fbb sdsl_wm QWMpfs
256

QWM256

12/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Experimental Evaluation (Throughput)

[Bab+15] Maxim A. Babenko, Pawel Gawrychowski, Tomasz Kociumaka, and Tatiana Starikovskaya. “Wavelet
Trees Meet Suffix Trees”. In: SODA. SIAM, 2015, pages 572–591. DOI:
10.1137/1.9781611973730.39.

[CNP15] Francisco Claude, Gonzalo Navarro, and Alberto Ordóñez Pereira. “The Wavelet Matrix: An Efficient
Wavelet Tree for Large Alphabets”. In: Inf. Syst. 47 (2015), pages 15–32. DOI:
10.1016/j.is.2014.06.002.

[DFK20] Patrick Dinklage, Johannes Fischer, and Florian Kurpicz. “Constructing the Wavelet Tree and
Wavelet Matrix in Distributed Memory”. In: ALENEX. SIAM, 2020, pages 214–228. DOI:
10.1137/1.9781611976007.17.

[Din+21] Patrick Dinklage, Jonas Ellert, Johannes Fischer, Florian Kurpicz, and Marvin Löbel. “Practical
Wavelet Tree Construction”. In: ACM J. Exp. Algorithmics 26 (2021), 1.8:1–1.8:67. DOI:
10.1145/3457197.

13/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Bibliography I

https://doi.org/10.1137/1.9781611973730.39
https://doi.org/10.1016/j.is.2014.06.002
https://doi.org/10.1137/1.9781611976007.17
https://doi.org/10.1145/3457197

[Din+23] Patrick Dinklage, Johannes Fischer, Florian Kurpicz, and Jan-Philipp Tarnowski. “Bit-Parallel
(Compressed) Wavelet Tree Construction”. In: DCC. IEEE, 2023, pages 81–90. DOI:
10.1109/DCC55655.2023.00016.

[EK19] Jonas Ellert and Florian Kurpicz. “Parallel External Memory Wavelet Tree and Wavelet Matrix
Construction”. In: SPIRE. Volume 11811. Lecture Notes in Computer Science. Springer, 2019,
pages 392–406. DOI: 10.1007/978-3-030-32686-9_28.

[Fer+07] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro. “Compressed
representations of sequences and full-text indexes”. In: ACM Trans. Algorithms 3.2 (2007), page 20.
DOI: 10.1145/1240233.1240243.

[Fue+17] José Fuentes-Sepúlveda, Erick Elejalde, Leo Ferres, and Diego Seco. “Parallel construction of
wavelet trees on multicore architectures”. In: Knowl. Inf. Syst. 51.3 (2017), pages 1043–1066.

[GGV03] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. “High-Order Entropy-Compressed Text
Indexes”. In: SODA. ACM/SIAM, 2003, pages 841–850.

14/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Bibliography II

https://doi.org/10.1109/DCC55655.2023.00016
https://doi.org/10.1007/978-3-030-32686-9_28
https://doi.org/10.1145/1240233.1240243

[Kan18] Yusaku Kaneta. “Fast Wavelet Tree Construction in Practice”. In: SPIRE. Volume 11147. Lecture
Notes in Computer Science. Springer, 2018, pages 218–232. DOI:
10.1007/978-3-030-00479-8_18.

[LSB17] Julian Labeit, Julian Shun, and Guy E. Blelloch. “Parallel lightweight wavelet tree, suffix array and
FM-index construction”. In: J. Discrete Algorithms 43 (2017), pages 2–17. DOI:
10.1016/j.jda.2017.04.001.

[MNV16] J. Ian Munro, Yakov Nekrich, and Jeffrey Scott Vitter. “Fast construction of wavelet trees”. In: Theor.
Comput. Sci. 638 (2016), pages 91–97. DOI: 10.1016/j.tcs.2015.11.011.

[Shu20] Julian Shun. “Improved parallel construction of wavelet trees and rank/select structures”. In: Inf.
Comput. 273 (2020), page 104516. DOI: 10.1016/j.ic.2020.104516.

15/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Bibliography III

https://doi.org/10.1007/978-3-030-00479-8_18
https://doi.org/10.1016/j.jda.2017.04.001
https://doi.org/10.1016/j.tcs.2015.11.011
https://doi.org/10.1016/j.ic.2020.104516

	Appendix

