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de-facto standard for access, rank, and queries

O(log σ) query time

require ⌈H0(T )⌉n(1 + o(1)) bits of space

Previous Work
lots of work on construction [Bab+15; CNP15;
DFK20; Din+21; Din+23; EK19; Fue+17; Kan18;
LSB17; MNV16; Shu20]

little work on queries [CNP15; Fer+07]

Faster Queries @ DCC’24
“Faster Wavelet Tree Queries ” (this paper)

“Another Virtue of Wavelet Forests” (poster)

3/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Wavelet Trees [GGV03]



accessandselect

000011010101001

acceadeec

000101110

accac

01101
edee

1011

ssnslt

110101

nl

10

ssst

0001

de-facto standard for access, rank, and queries

O(log σ) query time

require ⌈H0(T )⌉n(1 + o(1)) bits of space

Previous Work
lots of work on construction [Bab+15; CNP15;
DFK20; Din+21; Din+23; EK19; Fue+17; Kan18;
LSB17; MNV16; Shu20]

little work on queries [CNP15; Fer+07]

Faster Queries @ DCC’24
“Faster Wavelet Tree Queries ” (this paper)

“Another Virtue of Wavelet Forests” (poster)

3/11 Ceregini, Kurpicz, and Venturini | Faster Wavelet Tree Queries | DCC 2024 Institute of Theoretical Informatics, Algorithm Engineering

Wavelet Trees [GGV03]



accessandselect

000011010101001

acceadeecssnslt

000101110110101

accacnledeessst

011011010110001

Z[0] = 9

Z[1] = 7

Z[2] = 7

alternative representation of wavelet trees

“everything” known for trees applies to matrices

Construction
bit vector on each level

on k -th level symbols represented by k -th MSB

stably sort sequence using written bit as key

continue with next level

store number of zeros on each level in Z
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accessandselect
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Z[0] = 9

Z[1] = 7

Z[2] = 7

rankα(i)
r0 = i, b0 = 0
for k = 0, . . . , ℓ do
αk = (α >> (ℓ− 1 − k)) & 1
offset = αk ∗ Z [k ]
bk+1 = bv [k ].rankαk (bk) + offset

rk+1 = bv [k ].rankαk (rk) + offset

return rℓ+1 − bℓ+1

Cache Misses on Each Level
binary rank and select queries are expensive

rank/select data structures not in cache
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use quad vectors instead of bit vectors

space overhead 3.51%⇝ 6.25%

rank possible with 2.41% space overhead

⌈log σ/2⌉ levels (uncompressed)

halve cache misses for rank/select data
structures

more for rank queries in the tree/matrix

path through tree/matrix known at query time

accessandselect

000011010101001
000111001110101

accacnledeessst

011011010110001

C0 = [0, 5, 9, 11]

C1 = [0, 7]

Ci [α] number elements < α in level i
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Definition. Let Q[1, n] be a quad vector and ϵ ∈ N.
The RAA for a position i and a symbol α ∈ [0, 3] is

rankα(i) ∈ [rank≈
α (i), rank≈

α (i) + ϵ).

Lemma. The RAA for quad vectors can be solved in
constant time using Θ(n/ϵ) bits of space.

Lemma. A RAA data structure for quad vectors
requires Ω(n/ϵ) bits of space.

Proof (Sketch). Split quad vector Q[1..n] into blocks
of size ϵ/2.

Q

Bit vectors Bα[1..⌈2n/ϵ⌉] mark blocks containing
positions with rankα(i) = 0 mod ϵ/2 for α ∈ [0, 3].
Bα 1 1 1 1 1

to compute rank≈
α (i)

let j = ⌊2i/ϵ⌋ and k = Bα.rank1(j)

rankα(j · ϵ/2) ∈ [k · ϵ/2, k · ϵ/2 + ϵ/2)

rankα(i) ∈ [k · ϵ/2, k · ϵ/2 + ϵ)

rank≈
α (i) = k · ϵ/2
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Problem
let rk be the rank on the k -th level

RAA does not guarantee that rk ∈ [r≈k , r≈k + ϵ)

we can only compute rank≈
αk
(r≈k−1)

error could be up to (k − 1)ϵ

Solution
store position where rankα(i) = 0 mod ϵ/2
Bα 1 1 1 1 1

O(log ϵ) bits per position (offset)

store in Dk,α

use rank/select on bit vector to access offset

let dk−1 be successor of rk−1 in Dk,αk

∆ = min(dk−1 − r≈k−1, ϵ− 1)

r≈k = rankαk (dk−1)−∆

Lemma. At any level k , we have rk ∈ [r≈k , r≈k + ϵ).

requires Θ((n/ϵ log σ) log ϵ) bits of space

problematic if predictor does not fit into cache

use hierarchy of predictors
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∆ and Dk,α not necessary

error always small enough for σ up to 256

prefetch more cache lines

use two levels of predictors

first level with ϵ = 2048

second level with ϵ = 256

help to prefetch blocks and super blocks

Experimental Setup
AMD EPYC 7713

64 KB L1I and 64 KB L1D per core
512 KB L2I+D per core
256 MB L3I+D (32 MB per 8 cores CCX)

2 TB DDR4 RAM

Ubuntu 20.04.3 LTS kernel version 5.4.0-155

C++: GCC 11.1.0 (-03 -march=native)

Rust: cargo build -release
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This Paper
up to 3 times faster wavelet tree queries

predictive model for rank queries

What’s Next
compressed wavelet trees

use predictive model for other data structures

Check It Out
https://github.com/rossanoventurini/qwt
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