
Brief Announcement: (Near) Zero-Overhead C++ Bindings for
MPI∗

Demian Hespe
Researcher

Munich, Germany
demian.hespe@outlook.com

Lukas Hübner†
Karlsruhe Institute of Technology

Karlsruhe, Germany
huebner@kit.edu

Florian Kurpicz
Karlsruhe Institute of Technology

Karlsruhe, Germany
kurpicz@kit.edu

Peter Sanders
Karlsruhe Institute of Technology

Karlsruhe, Germany
sanders@kit.edu

Matthias Schimek
Karlsruhe Institute of Technology

Karlsruhe, Germany
schimek@kit.edu

Daniel Seemaier
Karlsruhe Institute of Technology

Karlsruhe, Germany
daniel.seemaier@kit.edu

Tim Niklas Uhl‡
Karlsruhe Institute of Technology

Karlsruhe, Germany
uhl@kit.edu

ABSTRACT
TheMessage-Passing Interface (MPI) and C++ form the backbone of
high-performance computing and algorithmic research in the field
of distributed-memory computing, but MPI only provides C and
Fortran bindings. This provides good language interoperability, but
higher-level programming languages make development quicker
and less error-prone.

We propose novel C++ language bindings designed to cover
the whole range of abstraction levels from low-level MPI calls
to convenient STL-style bindings, where most parameters are in-
ferred from a small subset of the full parameter set. This allows for
both rapid prototyping and fine-tuning of distributed code with
predictable runtime behavior and memory management. Using
template-metaprogramming, only code paths required for comput-
ing missing parameters are generated at compile time, which results
in (near) zero-overhead bindings.

CCS CONCEPTS
• Computing methodologies → Distributed algorithms; Mas-
sively parallel algorithms; Parallel programming languages; •
Software and its engineering → Software libraries and reposito-
ries.

KEYWORDS
MPI; Modern C++; Parallel Programming Libraries

∗A full version [7] is available at https://doi.org/10.48550/arXiv.2404.05610. The pre-
sented library is available at https://github.com/kamping-site/kamping.
†Also with Heidelberg Institute for Theoretical Studies.
‡Corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPAA ’24, June 17–21, 2024, Nantes, France
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0416-1/24/06
https://doi.org/10.1145/3626183.3660260

ACM Reference Format:
Demian Hespe, Lukas Hübner, Florian Kurpicz, Peter Sanders, Matthias
Schimek, Daniel Seemaier, and Tim Niklas Uhl. 2024. Brief Announcement:
(Near) Zero-Overhead C++ Bindings for MPI. In Proceedings of the 36th
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’24),
June 17–21, 2024, Nantes, France. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3626183.3660260

1 INTRODUCTION
The first version of the Message-Passing Interface (MPI) was pro-
posed by the Message-Passing Interface Forum in 1994 [9] with
the goal to standardize a portable, flexible, and efficient standard
for message-passing. Today, it is the backbone of most HPC appli-
cations. While the majority of them is written in C++ [8], MPI’s
syntax and semantics are designed around C and Fortran. While
this allows for calling MPI from C++ code, the semantics do not fit
well with modern C++ language features. This makes developing
MPI application in C++ unintuitive and error-prone [10].

MPI 2.0 (1997) introduced C++ bindings, which were deprecated
with MPI 2.2 (2009). With version 3.0 (2012), the bindings have
been removed entirely, because they only added minimal function-
ality over the C bindings while adding significant maintenance
complexity to the MPI specification [9].

Since then, there have been various efforts in designing new C++
interfaces. Notable libraries include Boost.MPI [6], RWTH-MPI [4]
and MPL [1], which has recently been considered as a starting
point for new C++ language bindings by the newly formed MPI
working group on language bindings [5]. For a detailed overview
of related work we refer the reader to our technical report [7].
While all of them agree that introducing compatibility with STL
containers, automatic datatype deduction and an object oriented
interface are key building blocks of such bindings, each new library
chooses its own level of abstraction, requiring different amounts
of boilerplate code. This may come at a performance penalty [5]
and may introduce additional sources of errors. To solve this we
introduce KaMPIng (Karlsruhe MPI next generation), a library of
novel C++ bindings for MPI.

https://doi.org/10.48550/arXiv.2404.05610
https://github.com/kamping-site/kamping
https://doi.org/10.1145/3626183.3660260
https://doi.org/10.1145/3626183.3660260
https://doi.org/10.1145/3626183.3660260

SPAA ’24, June 17–21, 2024, Nantes, France Demian Hespe et al.

The library’s main goal is to cover the complete range of abstrac-
tion levels over MPI calls, which makes it both easy to use but also
introduces nearly no overhead compared to using the C bindings.
Each parameter of an MPI call can either be provided directly by
the user or is computed by KaMPIng. It further offers complete
control over memory allocations. Because all this is achieved using
template meta-programming, only the code paths programmers
would have to write themselves are generated, which makes these
new bindings near zero-overhead.

2 OVERVIEW AND DESIGN
Similar to most previous bindings, KaMPIng represents MPI objects
such as communicators, requests and statuses as classes and op-
erations on them as member functions. Resource management is
achieved using RAII (Resource Acquisition Is Initialization) which
is a commonly used C++ idiom. Also, C++ datatypes are mapped
to MPI types at compile time, which prevents type matching errors.
STL containers which allow access to the underlying contiguous
memory are directly supported, i.e., every container which models
the std::contiguous_range concept. Raw pointers are supported
via std::span as proposed in the C++ core guidelines.

One of KaMPIng’s distinct features is parameter handling. A
common source of programming errors in MPI stems from the com-
plexity of the interface of many communication calls. In particular,
variable collective operations (suffixed with v) where the amount of
data transferred between each processor pair varies, require a large
number of parameters. The data to be sent or received is described
in terms of a pointer to a memory region, the datatype, the number
of elements and its displacements. This makes MPI calls verbose
and requires programmers to often consult the documentation for
required parameters and ordering. While all parameters are nec-
essary for full flexibility, there exist many use cases where only a
small subset of explicitly provided parameters suffices and the rest
can be inferred from them.

How we achieve this with near zero-overhead is discussed in
Section 2.1. If the number of elements to receive is already known
(or provided as a default), it may be desirable to resize containers
appropriately, but for highly-tuned applications such hidden alloca-
tion may be unfavorable. We therefore propose a flexible allocation
control in Section 2.2, which is configurable at compile time. As
the MPI standard continuously grows, C++ bindings also need to
evolve while maintaining compatibility with existing code and MPI
features not covered yet by such bindings. A key aspect here is to
keep KaMPIng’s core small, but allow easy integration of features
via plugins. We discuss this in Section 2.3.

2.1 Computation of Default Parameters
As discussed previously, MPI calls often allow for computing use-
ful default values for an operation based on only a small subset
of parameters. Consider the case, where we want to perform an
MPI_Allgatherv, where each rank initially holds an std::vector of
varying size and we want to join them to a global vector on each
rank. Then the send count and datatype can be directly inferred
from the vector. The receive counts and displacements can be com-
puted by an MPI_Allgather of all send counts and followed by an
exclusive prefix sum. While this is a common pattern, none of the

other C++ bindings allows to avoid this boilerplate code. Boost.MPI
offers various overloaded functions which allow the user to omit
explicit displacements, but the counts have to be communicated.
RWTH-MPI does provide a default variant which gathers the counts,
but it only works with MPI_IN_PLACE which requires a different data
layout and is therefore not applicable. This leaves us with a situa-
tion where the usability of C++ bindings depends on whether the
implementors had our particular use case in mind and provided a
default option for it.

To address this, we choose an alternative approach inspired by
named parameters, where parameters passed to a function can be
named at the caller site and passed in arbitrary order (as known
from languages like Python). This allows us to check for the pres-
ence of each parameter and to compute default values only if the
respective parameter is omitted, without resorting to many over-
loads exploring the complete combinatorial explosion of parameters.
To avoid runtime overhead, we rely on template meta-programming
to only generate the code paths required for computing missing
parameters at compile time. To allgather a vector , other bindings
require at least 5 lines of code [7], while the KaMPIng version is a
one liner:

std::vector <T> v_glob = comm.allgatherv(send_buf(v));

The use of named parameters also improves readability if multi-
ple arguments are passed to a call.

2.2 Controlling Memory Allocation
Previous MPI wrappers have no unified way of controlling memory
allocation. They either accept containers which are always resized
to fit, or, if resizing is not desired, the user has to pass raw pointers
directly. They also offer no control over allocation happening for
default parameter computation, but always use the default allocator
and std::vector for auxiliary data structures.

KaMPIng allows for fine-grained control over memory manage-
ment. Each parameter accepting a container takes an optional tem-
plate parameter indicating its resize policy, which controls whether
it is always resized to fit, resized if it does not have enough space
to store the result, or performs no checking and assumes that the
memory location pointed to by the container is large enough. Data
may either be passed by reference or by value and the user may
control which of the internal auxiliary data structures are returned
by value. For example, this allows to either receive a message into
a newly allocated vector which is returned as a result of the call or
into a reusable receive container, which is passed by reference.

If KaMPIng has to create auxiliary data structures to compute
missing parameters, the user may either pass preallocated con-
tainers to use or can provide the container’s type via template
parameters. Recall that additional allocation is omitted entirely
when parameters are provided by the user.

Again, through the use of template meta-programming, this
involves no additional overhead compared to a hand-rolled imple-
mentation. This flexibility allows to quickly implement distributed
algorithms and then iteratively fine-tune memory allocations and
library inferred values. This facilitates an algorithm engineering
workflow which involves iterative refinement of implementations
and analysis through experimentation.

Brief Announcement: (Near) Zero-Overhead C++ Bindings for MPI SPAA ’24, June 17–21, 2024, Nantes, France

1 2 4 8 16 32 64 128 256
0.2
0.4
0.6
0.8
1

compute nodes (48 ranks each)

tim
e
(s
) plain MPI [9] (32 LOC)

Boost.MPI [6] (30 LOC)
MPL [1] (37 LOC)
RWTH [4] (21 LOC)
KaMPIng (16 LOC)

Figure 1: Running time of and lines of code (LOC) of sample
sort using different MPI bindings. KaMPIng has the smallest
mean squared error compared to plain MPI.

2.3 Expandability
While the main goal of KaMPIng is to design C++ bindings for MPI
which cover most usage scenarios, this is impossible to achieve.

We therefore designed KaMPIng with expandability and compat-
ibility with existing MPI code in mind, to allow easy extension and
alteration of it’s core features. KaMPIng’s plugin interface allows
overriding and adding member functions of a communicator object
(e.g. collectives) without changing existing application code. For
example, this allows enhancing communicators with primitives
tailored for irregular sparse all-to-all exchanges [7].

Ease of development for MPI applications could also be massively
improved by providing a standard library of distributed algorithms
and data structures, but incorporating this in KaMPIng’s core would
make it overly complex.

Via plugins we can keep KaMPIng’s core library small, while
providing a base for third party general purpose MPI libraries and
keeping maintenance low, in order not to follow the fate of the
official MPI C++ interface.

3 EVALUATION
To highlight the usability and (near) zero-overhead of our library, we
show how to implement a small real world example using KaMPIng.
We use a text book implementation of distributed sample sort [11]
and reimplemented it using all previously proposed C++ MPI bind-
ings. The full KaMPIng implementation is shown in Fig. 2. 1

Figure 1 shows the running time of the different implementa-
tions using up to 256 compute nodes of SuperMUC-NG. We sort a
distributed array of 106 random 64-bit integers per rank.

We see that KaMPIng introduces no additional overhead com-
pared to a hand-rolled implementation in plain MPI or other li-
braries. The implementation is the shortest, being 3 times shorter
than the plain MPI variant. The more concise code improves read-
ability and removes potential for programming errors.

These findings are not limited to sample sort, but also apply
to more complex applications in graph processing, suffix array
construction and phylogenetic interference [7].

4 CONCLUSION
We introduced KaMPIng, a set of novel near zero-overhead C++MPI
bindings. Through configurable inference of parameter defaults,
fine-grained allocation control, and a flexible plugin system, it
enables rapid prototyping and careful engineering of distributed
algorithms.
1See https://github.com/kamping-site/kamping-examples for full code.

void sort(std::vector <T>& data , Communicator comm) {

using namespace std;

const size_t num_samples = 16 * log2(comm.size ()) + 1;

vector <T> lsamples(num_samples);

sample(data.begin(), data.end(), lsamples.begin(),

num_samples , mt19937{random_device {}()});

auto gsamples = comm.allgather(send_buf(lsamples));

sort(gsamples.begin(), global_samples.end ());

for (size_t i = 0; i < comm.size() - 1; i++) {

gsamples[i] = global_samples[num_samples * (i + 1)];

}

gsamples.resize(comm.size() - 1);

vector <vector <T>> buckets = build_buckets(data , gsamples);

data = with_flattened(buckets).call ([&](auto ... flattened) {

return comm.alltoallv(std::move(flattened)...);

}

sort(data.begin(), data.end ());

}

Figure 2: Distributed sample sort using KaMPIng.

KaMPIng is publicly available, extensively tested, and currently
used in multiple research projects. It covers the most commonly
used MPI features [8] and we plan to extend standard coverage. We
are currently working towards our goal of building a basic algo-
rithmic toolbox on top of KaMPIng, to ease rapid prototyping and
analysis of distributed algorithms with a strong focus on perfor-
mance. With distributed containers and optimized communication
primitives, we want to enable lightweight bulk parallel computation
inspired by MapReduce [3] and Thrill [2], while not locking the
programmer into the walled garden of a particular framework. We
strive to establish KaMPIng as a stable core for a whole ecosystem
of future general purpose distributed algorithms and applications.

ACKNOWLEDGMENTS
The authors gratefully acknowledge the Gauss Centre for Super-
computing e.V. (www.gauss-centre.eu) for funding this project by
providing computing time on the GCS Supercomputer SuperMUC
at Leibniz Supercomputing Centre (www.lrz.de).

This project has received funding from the
European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and inno-
vation program (grant agreement No. 882500).

This work was supported by a grant from the Ministry of Sci-
ence, Research and the Arts of Baden-Württemberg (Az: 33-7533.-
9-10/20/2) to Peter Sanders and Alexandros Stamatakis.

REFERENCES
[1] Heiko Bauke. 2015. MPL - A message passing library. https://github.com/rabauke/

mpl
[2] Timo Bingmann et al. 2016. Thrill: High-performance algorithmic distributed

batch data processing with C++. In IEEE BigData. https://doi.org/10.1109/BigData.
2016.7840603

[3] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified data processing
on large clusters. (2004).

[4] Ali Can Demiralp et al. 2022. A C++20 Interface for MPI 4.0. Poster at SC’22.
[5] Sayan Ghosh et al. 2021. Towards Modern C++ Language Support for MPI. In

ExaMPI@SC. IEEE, 27–35.
[6] Douglas Gregor and Matthias Troyer. 2005–2007. Boost.MPI. version 1.84.
[7] Demian Hespe et al. 2024. KaMPIng: Flexible and (Near) Zero-Overhead C++

Bindings for MPI. CoRR (2024). http://arxiv.org/abs/2404.05610
[8] Ignacio Laguna et al. 2019. A large-scale study of MPI usage in open-source HPC

applications. In SC. ACM, 31:1–31:14.
[9] MPI Forum. 2009. MPI: A Message-Passing Interface Standard – Version 2.2.
[10] Martin Ruefenacht et al. 2021. MPI Language Bindings Are Holding MPI Back.

CoRR (2021). http://arxiv.org/abs/2107.10566v1
[11] Peter Sanders, Kurt Mehlhorn, Martin Dietzfelbinger, and Roman Dementiev.

2019. Sequential and Parallel Algorithms and Data Structures. Springer.

https://github.com/kamping-site/kamping-examples
www.gauss-centre.eu
www.lrz.de
https://github.com/rabauke/mpl
https://github.com/rabauke/mpl
https://doi.org/10.1109/BigData.2016.7840603
https://doi.org/10.1109/BigData.2016.7840603
http://arxiv.org/abs/2404.05610
http://arxiv.org/abs/2107.10566v1

	Abstract
	1 Introduction
	2 Overview and Design
	2.1 Computation of Default Parameters
	2.2 Controlling Memory Allocation
	2.3 Expandability

	3 Evaluation
	4 Conclusion
	Acknowledgments
	References

