
Parallel
Text Index Construction

Dissertation

zur Erlangung des Grades eines

D o k t o r s d e r N a t u r w i s s e n s c h a f t e n

der Technischen Universität Dortmund
an der Fakultät Informatik

von

Florian Kurpicz

Dortmund

2020

Tag der mündlichen Prüfung: 26.05.2020

Dekan: Prof. Dr.-Ing. Gernot A. Fink
Technische Universität Dortmund
Germany

Erster Gutachter: Prof. Dr. Johannes Fischer
Technische Universität Dortmund
Germany

Zweiter Gutachter: Prof. Dr. Simon J. Puglisi
University of Helsinki
Finland

ABSTRACT
The focus of this dissertation is the parallel construction of text indices. Text indices
provide additional information about a text that allow to answer queries faster. Full-
text indices for example are used to efficiently answer phrase queries, i. e., if and
where a phrase occurs in a text. The research in this dissertation is focused on but
not limited to parallel construction algorithms for text indices in both shared and
distributed memory.
In the first part, we look at wavelet trees: a compact index that generalizes rank

and select queries from binary alphabets to alphabets of size σ. Using a wavelet tree
these queries can be answered in O(lg σ) time. Being a compact index, the wavelet
tree of a text of length n over an alphabet of size σ requires only n lg σ+ o(n lg σ) bits
of space. We also look at wavelet matrices, which are an alternative representation
of wavelet trees and can answer the same queries in the same time while requiring
the same space. However, due to a slightly different structure, wavelet matrices are
sometimes easier to compute.
Here, our main contribution are the fastest and most memory efficient sequential,

shared memory parallel, and semi-external construction algorithms for both wavelet
trees and wavelet matrices. Then, we also present the first external memory wavelet
tree construction algorithms, which we also parallelize. Huffman-shaped wavelet trees
are often used when the text (and wavelet tree) should be compressed. Our sequential
and shared memory parallel Huffman-shaped wavelet tree construction algorithms
are again the fastest and most memory efficient ones. The corresponding wavelet
matrix construction algorithms are of similar speed and the first practical algorithms
computing the Huffman-shaped wavelet matrix.

In the second part of this dissertation, we consider the suffix array—one of the most
researched text indices. The suffix array of a text contains the starting positions of
the text’s lexicographically sorted suffixes, i. e., we want to sort all its suffixes. It is
often accompanied by the longest common prefix (LCP) array that contains the size
of the longest common prefix of two lexicographically consecutive suffixes. There exist
over 24 suffix array construction algorithms that work in main memory, and more that
work in shared and distributed memory or other models of computation. All these
algorithms employ one of three major techniques (or a combination of those): prefix
doubling, induced copying, and recursion.

We first conduct a practical evaluation of suffix sorting in main memory, identifying
that the fastest algorithms are all based on induced copying and extend the fastest
suffix sorting algorithm on most inputs—the DivSufSort—to also compute the LCP
array. This gives us a fast LCP array construction algorithm that has a good trade-

i

off between running time and memory requirements, as the (still) fastest LCP array
construction algorithm requires 1.4 times as much memory.
Next, we again focus on parallel algorithms. We present multiple distributed suf-

fix sorting algorithms. First, we implement five suffix sorting algorithms using the
distributed batch computation processing framework Thrill. Thrill allows for an easy
implementation of distributed algorithms but limits the options to access data. Then,
we implement suffix sorting algorithms using the Message Passing Interface (MPI),
which is a standardized interface to distribute messages in shared memory. The re-
sulting algorithms are the most memory efficient distributed suffix array construction
algorithms and have comparable speed to previously existing algorithms. However,
they require less memory than all previously existing distributed suffix sorting algo-
rithms, which allows us to compute suffix arrays for larger inputs than before on the
same hardware.

Finally, we use the distributed suffix arrays (and LCP arrays) to compute distributed
Patricia tries. This allows us to answer different phrase queries more efficiently than
using only the suffix array. In practice, our implementation speeds up existential,
counting, and enumeration queries compared to previously existing algorithms that
work directly on the suffix array. We also present succinct versions of the distributed
Patricia trie.

ii

ZUSAMMENFASSUNG
(IN GERMAN)

In dieser Dissertation betrachten wir die parallele Konstruktion von Text-Indizes.
Text-Indizes stellen Zusatzinformationen über Texte bereit, die Anfragen hinsichtlich
dieser Texte beschleunigen können. Ein Beispiel hierfür sind Volltext-Indizes, welche
für eine effiziente Phrasensuche genutzt werden, also etwa für die Frage, ob eine Phrase
in einem Text vorkommt oder nicht. Diese Dissertation befasst sich hauptsächlich,
aber nicht ausschließlich mit der parallelen Konstruktion von Text-Indizes im geteilten
und verteilten Speicher.

Im ersten Teil der Dissertation betrachten wir Wavelet-Trees. Dabei handelt es sich
um kompakte Indizes, welche Rank- und Select-Anfragen von binären Alphabeten
auf Alphabete der Größe σ verallgemeinern. Ein Wavelet-Tree kann diese Anfragen
dann in O(lg σ) Zeit beantworten. Der Wavelet-Tree gilt als kompakt, da er für einen
Text der Länge n über einem Alphabet der Größe σ lediglich n lg σ + o(nlgσ) Bits
Platz benötigt. Zusätzlich zu den Wavelet-Trees betrachten wir auch die Wavelet-
Matrix. Diese ist eine alternative Darstellung des Wavelet-Trees, kann die gleichen
Anfragen in gleicher Zeit beantworten und benötigt den gleichen Platz. Allerdings ist
die Konstruktion einer Wavelet-Matrix für bestimmte Eingaben einfacher.
In dieser Dissertation stellen wir zudem die schnellsten und speichersparsams-

ten sequenziellen, (im geteilten Speicher) parallelen und semi-externen Speicher-
Konstruktionsalgorithmen für Wavelet-Trees undWavelet-Matrizen vor. Außerdem be-
schreiben wir die ersten Wavelet-Tree- und Wavelet-Matrix-Konstruktionsalgorithmen
für den externen Speicher. Diese Algorithmen parallelisieren wir zudem.
Huffman-shaped Wavelet-Trees werden oft genutzt, wenn der Text komprimiert

werden soll. Hier erhalten wir einen Wavelet-Tree über den komprimierten Text.
Unsere sequenziellen und (im geteilten Speicher) parallelen Konstruktionsalgorithmen
für Huffman-shaped Wavelet-Trees sind dabei die schnellsten und speichersparsamsten.
Die daraus resultierenden Huffman-shaped Wavelet-Matrix-Konstruktionsalgorithmen
haben eine ähnliche praktische Laufzeit und den gleichen Speicherbedarf. Sie sind
dabei die ersten Huffman-shaped Wavelet-Matrix-Konstruktionsalgorithmen.
Im zweiten Teil der Dissertation betrachten wir das Suffix-Array, den am besten

erforschten Text-Index überhaupt. Das Suffix-Array enthält die Startpositionen aller
lexikografisch sortierten Suffixe eines Textes, d. h., wir möchten alle Suffixe eines
Textes sortieren. Oft wird das Suffix-Array um das Longest-Common-Prefix-Array
(LCP-Array) erweitert. Das LCP-Array enthält die Länge der längsten gemeinsamen

iii

Präfixe zweier lexikografisch konsekutiven Suffixe.
Es gibt über 24 verschiedene Suffix-Array-Konstruktionslagorithmen: sequenzielle,

(im geteilten und verteilten Speicher) parallele und solche in weiteren Modellen. All
diese Algorithmen bauen auf einer (oder einer Kombination) von drei verschiedenen
Techniken auf: Prefix Doubling, Induced Copying und Rekursion. Zunächst führen
wir eine praktische Evaluation von Suffix-Sortier-Algorithmen im Hauptspeicher durch.
Hierbei stellen wir fest, dass die schnellsten Algorithmen auf der Technik des Induced
Copying basieren. Anschließend erweitern wir den schnellsten (basierend auf den
meisten Eingaben) Algorithmus – den DivSufSort –, sodass zusätzlich das LCP-Array
konstruiert wird. Der daraus resultierende Algorithmus ist ein schneller LCP-Array-
Konstruktionsalgorithmus, der eine gute Balance zischen Laufzeit und Speicherbedarf
aufweist, da der bisher immer noch schnellste Algorithmus 1,4-mal soviel Speicher
benötigt.
Als Nächstes richten wir unseren Fokus wieder auf parallele Algorithmen und be-

trachten verschiedene (im verteilten Speicher) parallele Suffix-Sortier-Algorithmen.
Wir implementieren fünf solcher Algorithmen in dem verteilten Batch-Verarbeitungs-
Framework Thrill. Dieses ermöglicht eine einfach und schnelle Implementierung ver-
teilter Algorithmen, limitiert jedoch die Möglichkeiten, wie man auf Daten zugrei-
fen kann. Um die Resultate besser einordnen zu können, implementieren wir diese
Algorithmen auch mit dem Message Passing Interface (MPI). Hierbei handelt es
sich um eine standardisierte Schnittstelle zum Nachrichtenaustausch im verteilten
Speicher. Diese Algorithmen sind die speichersparsamsten verteilten Suffix-Array-
Konstruktionsalgorithmen, die das Suffix-Array ähnlich schnell wie bereits existierende
Algorithmen konstruieren. Durch die Speichersparsamkeit können wir das Suffix-Array
auf der gleichen Hardware dabei für deutlich größere Eingaben als zuvor konstruieren.
Abschließend nutzen wir verteilte Suffix- und LCP-Arrays, um den Distributed-

Patricia-Trie zu konstruieren. Dieser erlaubt es uns, verschiedene Phrase-Anfragen
effizienter zu beantworten, als wenn wir nur das Suffix-Array nutzen. In der Praxis
beschleunigt unsere Implementierung somit Existential-, Counting- und Enumeration-
Anfragen im Vergleich zur Beantwortung direkt auf dem Suffix-Array. Zuletzt stellen
wir noch Varianten des Distributed-Patricia-Trie vor, die auf platzeffizienten Daten-
strukturen aufbauen.

iv

CONTENTS
1 Introduction 1

1.1 Our Contributions . 2
1.2 Basic Notations . 4
1.3 Considered Machine Models . 4

1.3.1 Parallel Random Access Memory Model 5
1.3.2 Distributed Memory Model . 6
1.3.3 COST of Parallelization . 7
1.3.4 External Memory Model . 8

1.4 Experimental Setup . 8
1.4.1 Hardware . 8
1.4.2 Text Corpora . 9

1.5 Corresponding Publications . 12
1.5.1 Publications Contributing to this Dissertation 12

I Shared and External Memory Wavelet Tree Construction 15

2 Overview of Wavelet Tree Constriction 17
2.1 Preliminaries . 18
2.2 The Wavelet Tree . 18
2.3 The Wavelet Matrix . 20
2.4 From the Wavelet Tree to the Wavelet Matrix 22
2.5 Related Work . 25

2.5.1 Sequential Wavelet Tree Construction Algorithms 26
2.5.2 Parallel Wavelet Tree Construction Algorithms 28
2.5.3 Further Wavelet Tree Construction Algorithms 31

3 Engineering Wavelet Tree Construction 33
3.1 Bottom-Up Computation of Histograms 33
3.2 Sequential Construction . 34

3.2.1 Prefix Counting . 35
3.2.2 Prefix Sorting . 36
3.2.3 Adaption to the Wavelet Matrix 37
3.2.4 Experimental Evaluation . 38

3.3 Shared Memory Construction . 41
3.3.1 Parallel Prefix Counting . 43

v

CONTENTS

3.3.2 Parallel Prefix Sorting . 44
3.3.3 Domain Decomposition . 45
3.3.4 Adaption to the Wavelet Matrix 46
3.3.5 Experimental Evaluation . 48

3.4 External Memory Construction . 54
3.4.1 Sequential Construction in Semi-External Memory 54
3.4.2 Sequential Construction in External Memory 55
3.4.3 Parallel Construction in External Memory 58
3.4.4 Experimental Evaluation . 60

3.5 Huffman-shaped Wavelet Trees . 69
3.5.1 Huffman Codes for Wavelet Trees and Wavelet Matrices 69
3.5.2 Huffman-shaped Wavelet Tree Construction Algorithms 73
3.5.3 Experimental Evaluation . 75

3.6 Conclusion and Future Work . 83

II Distributed Memory Text Index Construction 87

4 An Excursion to Suffix Sorting in Main Memory 89
4.1 Suffix Array Construction Algorithms 90
4.2 Dismantling DivSufSort . 98

4.2.1 Classification of Suffixes . 98
4.2.2 Sorting of Sampled Suffixes . 101
4.2.3 Inducing of Suffixes . 106
4.2.4 Running Time and Memory Requirements 107

4.3 Inducing the LCP array . 109
4.3.1 Computing the LCP Values of the C+.-Suffixes 109
4.3.2 Inducing LCP Values in Addition to the Suffix Array 110
4.3.3 Special Cases during LCP Induction 112

4.4 Experimental Evaluation . 112
4.5 Conclusion and Future Work . 114

5 Distributed Suffix Array Construction 119
5.1 Preliminaries . 120

5.1.1 MPI: The Message Passing Interface 121
5.1.2 Thrill: A Distributed Big Data Batch Processing Framework . 121

5.2 Distributed Prefix Doubling . 123
5.2.1 Prefix Doubling in Thrill . 124
5.2.2 Prefix Doubling in MPI . 133

5.3 Distributed Recursive Suffix Sorting 135
5.4 Distributed Induced Copying . 139

5.4.1 Extended Classification of Suffixes 139
5.4.2 General Overview . 141
5.4.3 Identifying Suffixes in Distributed Memory 142

vi

CONTENTS

5.4.4 Sorting of Suffixes in Distributed Memory 143
5.4.5 Inducing the Suffix Array . 144
5.4.6 Space and Time Requirements 147

5.5 Distributed String Sorting . 147
5.6 Experimental Evaluation . 148

5.6.1 Evaluation of Distributed Suffix Sorting using Thrill 149
5.6.2 Evaluation of Distributed Suffix Sorting using MPI 153
5.6.3 Evaluation of Distributed String Sorting 159

5.7 Conclusion and Future Work . 160

6 The Distributed Patricia Trie 163
6.1 Related Work . 163
6.2 Preliminaries . 164

6.2.1 Tries . 165
6.2.2 Succinct Data Structures . 166

6.3 Distributed Patricia Trie . 168
6.3.1 Construction of the Distributed Patricia Trie 168
6.3.2 Querying a Distributed Index 172

6.4 Experimental Evaluation . 176
6.5 Conclusion and Future Work . 179

A DivSufSort’s Code 181
A.1 divsufsort.c . 181
A.2 sssort.c . 185
A.3 trsort.c . 190

Bibliography 195

vii

CHAPTER 1
INTRODUCTION

Stringology is a field of computer science that focuses on algorithms and data structures
for texts. In this dissertation, we look at data-structures for texts that structure the
inputs such that it can easily be searched—so called text indices. These text indices
allow us to answer different queries on the text more efficiently.
Let us start with a simple and well-known example of a text index. If we want to

list all occurrences of the word “efficient” in this dissertation, we have to read it at
least once. However, if we have an index that lists all occurrences of all words in this
dissertation, we just have to search for “efficient” in the index, without having to read
the whole text. Furthermore, if all words in the index are sorted lexicographically, we
can find the word faster, because we know where the word occurs relatively to all other
words in the index. Similar to this example, we want to construct different text indices
that allow us to speed up different queries. For example, we are not only interested
in querying for simple words but also in phrases. Some text indices considered in this
dissertation can answer queries asking for phrases, e. g., when we look for the phrase
“efficient parallel construction.”

An efficient construction of text indices is important, as the amount of data created
on a daily basis is ever increasing and texts are on the forefront of this data flood, as
the world wide web, digital encyclopedias, and biological data like DNA and proteins
are all represented as textual data. In this dissertation we focus on the parallel
construction of text indices. Parallel computation of text indices allows us to gain
considerable speedups in computation speed even if the speed of single CPU cores
does not increase further.

We consider two different parallel models in this dissertation: shared memory (mul-
tiple CPU cores that all share the same main memory) and distributed memory (using
multiple CPUs that all have their own main memory and are connected via a network).
In these parallel settings, “efficient” has multiple meanings. We are mostly interested
in the following ones. First of all, our algorithms have to be fast. Even though we
use potent hardware that provides lots of CPU cores we are interested in algorithms
that are fast even when we only use a single CPU core. Then, our algorithm have
to scale, i. e., if we double the number of CPU cores used we (ideally) would like to
double the throughput, because this helps to predict the behavior of the algorithm
when we use even more CPU cores in the future. Finally, our algorithms should be
memory efficient as this allows us to process more input on the same hardware if we
are limited by the size of the main memory.

1

CHAPTER 1 INTRODUCTION

As mentioned before, different text indices may be useful for different queries. There-
fore, we do not only look at a single text index, but at different ones that we introduce
in the next section. However, the main focus of this dissertation are not the queries,
but their construction. While we conduct some experiments for answering queries at
the end, we are mainly interested in the efficient construction.

A Short Note on this Dissertation. This document was created with its printed
version in mind. Hence, it is best viewed in color and with facing pages, as most
figures are placed accordingly. Our citation policy is as follows: We cite the most
recent version of all papers, i. e., if there is a more recent journal version of a paper
previously published at a conference, we cite the journal version.

1.1 OUR CONTRIBUTIONS
In this dissertation, we look at three different text indices—wavelet trees, suffix arrays,
and Patricia tries—and present efficient construction algorithms for all three of them.
As mentioned before, we focus on the parallel construction in shared and distributed
memory and provide construction algorithm that scale well. Another central point
of our construction algorithm are their low memory requirements, which allows us to
process larger inputs on the same hardware.
The structure of this dissertation follows these three data structures, and is split

into two parts. In the first part, we consider shared memory construction (with a
quick side-trip to external memory) of wavelet trees. In the second part, we first look
at main memory suffix sorting and longest common prefix array computation before
we present different distributed memory suffix sorting algorithms. Then, we use the
distributed suffix arrays to construct distributed Patricia tries.

On Wavelet Trees
In Part I, we take a detailed look at wavelet trees [Gro+03] and wavelet matrices
[Cla+15], which are space efficient indices that allow us (among others) to generalize
rank and select queries from the binary alphabet to alphabets of arbitrary size. Our
work focuses on the efficient construction of wavelet trees and wavelet matrices—we
do not answer queries using them.
There exists a a lot of work regarding the construction of wavelet trees, which we

summarize with a focus on practical results in Chapter 2. We also give a detailed
insight on the structure of wavelet trees and wavelet matrices in Section 2.4, focusing
on the transformation from the former to the latter.

For the construction of wavelet trees and wavelet matrices, we first present a novel
technique—the bottom-up construction—that we employ in all our algorithms. See Sec-
tion 3.1. We use this technique in multiple models of computation and create the
fastest and most memory efficient wavelet tree and wavelet matrix construction al-
gorithms in practice in the following models of computation: (i) in Section 3.2, we
consider sequential algorithms in the Word RAM model, (ii) in Section 3.3, we show

2

1.1 OUR CONTRIBUTIONS

how we can extend the algorithms to work in shared memory, and finally (iii) in
Section 3.4, we extend our algorithms to work in semi-external and external memory.
In addition, we also show how to efficiently compute Huffman-shaped wavelet trees
and wavelet matrices, i. e., wavelet trees and wavelet matrices for a Huffman encoded
text in Section 3.5.

On Suffix Arrays
In Part II, we focus on the suffix array [Gon+92; MM93]. The task of constructing
the suffix array translates to sorting all suffixes in lexicographical order. To this end,
we first examine the practicality of different suffix sorting algorithms in main memory.
There exists a plethora of different algorithms that can be classified into three different
types (and hybrids) of algorithms. Our first result (Chapter 4) is the first practical
survey of all implemented suffix sorting algorithms. We identify the fastest suffix
sorting algorithm (in main memory) and extend it, such that it also computes the
longest common prefix (LCP) array. The LCP array often accompanies the suffix
array to speed up the search in the suffix array, which results in the fastest algorithm
that computes both the suffix array and the LCP array. However, computing the LCP
array using the suffix array is faster than computing both at the same time.

Next, in Chapter 5, we tackle distributed memory suffix sorting. We first implement
two different suffix sorting algorithms in two and three different variants (for a total
of five different algorithms) using the big data batch computation framework Thrill.
Since Thrill imposes some limitations on the algorithms, we use the Message Passing
Interface (MPI) to implement further distributed suffix sorting algorithms that have a
similar throughput compared with existing algorithms but require less memory. Among
them is the first induced copying suffix sorting algorithm in distributed memory. While
not the fastest, this is the most memory efficient distributed suffix sorting algorithms,
which allows us to handle much larger inputs on the same hardware as before.

On Patricia Tries
Finally, in Chapter 6, we present the distributed Patricia trie—a distributed version of
the Patricia trie [Mor68]. We use the suffix array and LCP array to compute a compact
index that speeds up querying the suffix array. Our distributed Patricia trie supports
three different types of queries (existential, counting, and enumeration queries). It
proves to be superior to querying the suffix array directly, as queries can be distributed
easier and can often be answered locally without additional communication. In this
chapter, we are, for the first time in this dissertation, interested in the speed we can
answer queries in. This is the first sophisticated distributed index build on top of the
distributed suffix array. Note that distributed indices that use the suffix array (or a
permutation of the suffix array) to answer queries exist.

In addition, we present different succinct implementations of the distributed Patricia
trie. To this end, we use three different tree representations that represent a tree
consisting of n nodes in 2n+ o(n) bits. The lower order term allows us to navigate in
these succinct tree representation.

3

CHAPTER 1 INTRODUCTION

1.2 BASIC NOTATIONS
Most of the notations we use in this dissertation are well established in the Stringology
community. Nevertheless, we briefly introduce notations we use in this dissertation in
this section. Notations that we only need in specific parts are introduced right before
needed. We use the binary logarithm and denote it by lg.
Throughout this dissertation, a text T = [T [0], T [1], . . . , T [n − 1]] consists of n

characters from a totally ordered alphabet Σ of size σ := |Σ|. Let [0, n] := {0, . . . , n}
and [0, n) := {0, . . . , n− 1} be ranges of integers. For any array A, we write A[i, j]
(or A[i, j)) to denote the sub-array of A ranging from i to j (or j − 1). The sub-array
is empty if i > j (or i ≥ j). In the case of texts, we call T [i, j] and T [i, j) substrings
of T , T [0..i) is the i-th prefix of T , and T [j..n) is the j-th suffix of T for i, j ∈ [0, n).
We denote the empty substring by ε.

We often refer to the histogram HistT of a text T . We simply write Hist without
indicating the corresponding text, if it is clear from context. Let T be a text of
length n over an alphabet of size σ. Here, a histogram is an array Hist[0, σ) with
Hist[i] = |{j ∈ [0, n) : T [j] = i}| for all i ∈ [0, σ). Unless necessary, we do not explicitly
mention the corresponding text.
Often, a text T does not contain all characters of the alphabet Σ = [0, σ). In this

case, we can make use of the effective alphabet that is a mapping of all σ′ characters
that actually occur in the text to a new alphabet Σ′ = [0, σ′) that preserves the
lexicographical order. To be more precise, we use the following mapping: Σ′[i] = Σ[j],
such that Hist[j] > 0 and |{k ∈ [0, j) ∈ : Hist[k] > 0}| = i, i. e., the (i+ 1)-th character
(with respect to their rank) that occurs at least once in the text.

Some explanations of algorithms are enhanced using pseudo code. To this end, we
require some notations that we use throughout this dissertation. First, we assume that
all arrays are allocated with the right size, e. g., if we have an array that we use to store
the histogram of a text over an alphabet of size σ, the array has σ positions. Initially,
all array positions contain only zeros. Then, we use the equal sign (=) for both:
comparison and assignment of values. Our syntax is close to real world programming
languages, e. g., when we use j = A[i]++ we first get the value stored in A[i] and then
we increase the value (stored in the array) by one.

1.3 CONSIDERED MACHINE MODELS
Whenever we analyze the running time, our considered model of computation is word
RAM (random access machine) model [Hag98] with (computer) word size w = Ω(lgn)
for inputs of size n. Here, we can access a computer word in O(1) time. In the word
RAM model, we represent texts as arrays where each character occupies one word.
However, given a string over an alphabet of size σ, we only require dlg σe bits to
represent a character. This allows us to store bw/dlg σec characters per (computer)
word. This technique is often called word packing.

Also, there are operations on computer words that can be computed in constant time,
i. e., bitwise operations like bitwise and, bitwise or, bitwise shift (left and right), and
access to any bit. We refer to Knuth [Knu14, p. 134ff] for a detailed list of operations.

4

1.3 CONSIDERED MACHINE MODELS

Note that modern hardware supports even more complex operations on computer
words, which we introduce whenever needed. In practice, the maximum computer
word size is usually 64 bits. Admittedly, newer (high performance computing) hardware
supports computer word sizes up to 512 bits, e. g., using the AVX-512 instruction set.

For our parallel algorithms, we need more sophisticated machine models to analyze
running times and other costs of the algorithms. In those models, we have multiple
processing elements (PEs) that execute algorithms in parallel. Processing element is
an abstract notion that can mean different things, depending on the setting. Now, we
describe different models and mention what a processing element refers to.

1.3.1 Parallel Random Access Memory Model

PE 0
local memory

PE 1
local memory

PE 2
local memory

PE 3
local memory

...
PE p − 1

local memory

shared
(main)

memory

Figure 1.1. Shared memory
model, where each PE has access
to a local memory that can only
be accessed by the corresponding
PE, and all PEs can communicate
over the shared memory.

The first parallel model we consider is the shared
memory parallel model. Here, all processing ele-
ments have a shared memory that they can use to
communicate, by writing to designated memory
addresses in the shared memory. See Figure 1.1
for a visualization. In practice, a processing el-
ement on a shared memory machine refers to a
CPU core or a thread that executes an algorithm,
the shared memory refers to main memory, and
the local memory is the cache of the CPU.

We analyze parallel shared memory algorithms
using JáJá’s work-time model [JáJ92] for parallel
random access machines, where we use two pa-
rameters work and time (sometimes also called
span) to measure the performance. For any par-
allel algorithm the work is the total number of
operations used by the algorithm, i. e., its sequen-
tial running time. The time, on the other hand,
is the number of time units that are needed to
execute the algorithm, when operations can be ex-
ecuted in parallel by different processing elements
of which we have unlimited many.

On parallel random access machines, we have to consider race conditions and false
sharing. Race conditions occur when the result of an algorithm depends on the
timely order of processing elements executing their operations. For example, let two
processing elements increase the variable occ which initially is 0: the first processing
element increases it by 2 and second processing element increases it by 3. Now, we
cannot be sure what value occ has afterwards; it could be 2, 3, or 5. To avoid such
undefined behavior in practice we can use semaphores or mutexes, which regulate the
access to memory and guarantee that only one processing element writes to the same
memory position at a time. Since those have an unwanted running time overhead, we
have to develop our algorithms such that race conditions do not occur by design.

5

CHAPTER 1 INTRODUCTION

False sharing occurs when two or more processing elements write to different memory
positions that are in the same cache line. Then, all other processing elements that
hold that cache line are forced to reload it, which results in additional and unnecessary
memory access (but not undefined behavior like race conditions) and should be avoided.

1.3.2 Distributed Memory Model

PE 0local memory

PE 1local memory

PE 2local memory

PE 3local memory

...

PE p − 1local memory

Figure 1.2. Distributed memory
mode. Compared with the shared
memory model (see Figure 1.1),
the local memory is usually much
larger and PEs can only communi-
cate over a network.

In the distributed memory model, algorithms run
on p distinct processing elements that are con-
nected by a network, e. g., are distributed in a
cluster on different physical hardware, such as
CPUs or CPU-cores in different (compute) nodes,
see Figure 1.2. In practice, the number of pro-
cessing elements in this setting is often orders of
magnitude greater than the number of processing
elements in shared memory, because we can use
multiple shared memory machines that are con-
nected by a network. Each processing element has
a unique rank in the range from 0 to p− 1. The
processing elements all have access to a local mem-
ory. In a cluster environment, this local memory
is usually the main memory. Here, it is possible
that different processing elements communicate
over the local memory. We do not consider this hy-
brid of distributed and shared memory explicitly.
However, in Chapter 5, we develop algorithms in
the Thrill framework that automatically makes
use of the hybrid approach.
We analyze our algorithms in the bulk-synchronous parallel (BSP) model [Val90].

Here, each algorithm is a sequence of supersteps, with each superstep being split into
three phases: First, the processing elements can perform any number of operations
based on local data. We use w to denote the maximum time used by a processing
element. Second, the processing elements can send data to other processing elements
(communication phase). Here, h is the maximum number of machine words com-
municated by any processing element, and G is the running time required for the
communication of one word. Last, all processing elements wait until every processing
element has finished the first two phases. L is the time of this barrier synchroniza-
tion. There is no synchronization between the first and second phase. Processing
elements can start communicating as soon as they have finished working on the local
data (but data received during the communication is not available for local operations
before the next barrier synchronization), see Figure 1.3. The total running time of
a BSP-algorithm is the time of all its supersteps, where the time of one superstep is
w + hG+ L.

6

1.3 CONSIDERED MACHINE MODELS

PE 0

PE 1

PE 2

. . .

PE p − 1

local

computatio
n

communicatio
n
barri

er

synchronizatio
n

. . .

Figure 1.3. Two supersteps in the BSP model. Local computation is depicted in
blue (), communication is highlighted in cyan (), and synchronization barriers are
shown in green ().

1.3.3 COST of Parallelization
In addition to the models described above, we also consider the practical cost of paral-
lelization by McSherry et al. [McS+15]. Here, the Configuration that Outperforms a
Single Thread (COST) of the parallel algorithm is the number of processing elements
that are required to process the input faster than the fastest sequential algorithm for
the same problem on the same hardware. The general idea behind this measurement
is to identify the overhead of the parallel implementations, as often poor baselines
are the reason for reported good speedups. Hence, the lower the COST the better;
the best COST is 2, as that is the least amount of processing elements needed for a
parallel algorithm to be faster than any sequential algorithm on the same hardware.

The COST is similar to the cost (lower case) and speedup defined by Casanova et al.
[Cas+08, page 10]. They say the cost is the running time of a parallel algorithm using
p processing elements times p. A low cost also correlates with a well-scaling parallel
algorithm, similar to the COST. However, the cost does not consider the fastest
sequential algorithm and is solely based on the scalability of the parallel algorithm.
The speedup is the running time of the fastest sequential algorithm divided by the
running time of the fastest parallel algorithm using p processing elements. Often
the speedup is defined with the parallel algorithm using only one processing element
instead of the fastest sequential one. Since we are using the fastest sequential one, we
can give the relationship between speedup [Cas+08] and COST [McS+15] of a parallel
algorithm: The smallest number of processing elements that results in a speedup
greater than 1 is the COST of the algorithm, because using this many processing
elements results in a parallel algorithm faster than the fastest sequential algorithm.

7

CHAPTER 1 INTRODUCTION

1.3.4 External Memory Model

PE
local memory

external memory

Figure 1.4. In the external mem-
ory model, data in external mem-
ory can only be accessed in blocks
of size B.

The external memory model [AV88] measures the
transfer of data between the main memory of size
M (also called local memory) and a secondary
memory (also called external memory) that is as-
sumed to be of unlimited size and slower in terms
of memory access than the main memory. Also,
data can only be transferred in blocks of size B be-
tween main and secondary memory. Transfers of
blocks are called I/O operations (I/Os for short)
and are the main cost measure of the external
memory model. External memory algorithms are
often analyzed using the I/Os of common operations. Later, in Section 3.4, we make
use of the scan operation. In the external memory model, scanning N elements
requires scan(N) = Θ(N/B) I/Os.
For semi-external algorithms, we assume that we have random access on either

the input or output—but not both, as then we would have an algorithm working in
main memory. This relaxation allows for algorithms that cannot easily be expressed
in the external memory model (due to expensive random access on either input or
output). The model is used in practice, e. g., the succinct data structure library
(SDSL) [Gog+14a] provides semi-external construction algorithms for many string
data structures.

1.4 EXPERIMENTAL SETUP
Now, we give a detailed description of the hardware used for our experiments in
Section 1.4.1, and describe the texts that we use as inputs and where to get them
from in Section 1.4.2. Since we published the source code (we give links to the code
whenever we evaluate our algorithms) of all our implementations, our results can be
verified by the reader.

1.4.1 Hardware
We conducted most of our experiments on nodes of a cluster, which run CentOS 7.6
as operating system. There, we have access to two types of nodes:
LiDO.small nodes are equipped with 64GB RAM and two Intel Xeon E5-2640v4

CPUs. Each CPU has 10 cores at 2.4GHz base frequency (3.4GHz maximum
turbo frequency) and cache sizes: 32KB L1D and L1I, 256KB L2, 25.6MB L3.
Both L1 and the L2 caches are private, the L3 cache is shared.

LiDO.big nodes are equipped with 256GB RAM and four Intel Xeon E5-4640v4 CPUs.
Each CPU has 12 cores at 2.1GHz base frequency (2.6GHz maximum turbo
frequency) and cache sizes: 32KB L1D and L1I, 256KB L2, 30MB L3. Both
L1 and the L2 caches are private, the L3 cache is shared

8

1.4 EXPERIMENTAL SETUP

PE 0 PE 1 PE 2 PE 3 PE 4 PE 5 PE 6 PE 7 PE 8

Switch Switch Switch

Switch

Figure 1.5. Nine processing elements that are connected 1:3 blocking.

Note that Hyperthreading is disabled on all nodes in the cluster by default and cannot
be enabled by us; we only use physical cores, of which there are 20 (LiDO.small) or
48 (LiDO.big). When used in the distributed memory setting, all nodes are connected
via Interconnect Infiniband QDR with a transfer rates of up to 40GBit/s and that are
connected at most 1:3 blocking, i. e., the switches are connected in a tree structure
where each inner node has three children, see Figure 1.5.

For external memory our experiments (which we present in Section 3.4), we used a
machine equipped with 16GiB RAM and one Intel Xeon i7-6800K CPU (6 cores at
frequencies up to 3.4GHz and cache sizes: 32 kB L1D and L1I, 256kB L2, and 15360
kB L3). The operating system is Ubuntu 16.04 (64-bit, Linux kernel 4.4). Our external
memory algorithms use the STXXL [Dem+08b] development snapshot (26-09-2017).
In our external memory experiments, we consider two different settings:
Ext.hdd eight Hitachi HUA72302 HDDs each with a capacity of 1.8TiB, or

Ext.ssd two Samsung SSD 850 EVO SSDs each with a capacity of 465.8GiB.

1.4.2 Text Corpora
One of the most used text corpora is the Pizza & Chili corpus, which is available
at http://http://pizzachili.dcc.uchile.cl. Unfortunately, the texts in it are
relatively small; all files are smaller than 2.5GiB, which is too small for most of our
experiments. Since we want to use the same texts for all of our experiments in this
dissertation we obtained different real world texts that have a wide variety of different
properties that we look at later. Next, we give precise information on the used texts
and where to obtain them. Hereafter, whenever we use a smaller text, we use a prefix
of the required size of the text. We want to mention that we use the Pizza & Chili
corpus for our main memory experiments in Chapter 4. Elsewhere, we make use of
the following four texts.

Common Crawl. The Common Crawl corpus contains websites that are crawled
by the Common Crawl Project. We use the WET files, which contain only the
textual data of the crawled websites, i. e., no HTML tags. We also removed the
meta information added by the Commoncrawl corpus. To be more precise, we used
the following WET files: crawl-data/CC-MAIN-2019-09/segments/1550247479101.

9

http://http://pizzachili.dcc.uchile.cl
crawl-data/CC-MAIN-2019-09/segments/1550247479101.30/wet/CC-MAIN-20190215183319-20190215205319-#ID.warc.wet
crawl-data/CC-MAIN-2019-09/segments/1550247479101.30/wet/CC-MAIN-20190215183319-20190215205319-#ID.warc.wet

CHAPTER 1 INTRODUCTION

30/wet/CC-MAIN-20190215183319-20190215205319-#ID.warc.wet, where #ID is in
the range from 00000 to 000600. As we only care for the text, we removed the WARC
meta information, i. e., each line consisting of WARC/1.0 and the following eight lines.
CommonCrawl is the concatenation of all files sorted in ascending order by their ID.

DNA. We obtained our DNA data sets from the 1000 Genomes Project. Here,
we extract the DNA data from FASTQ files. A FASTQ file contains four lines for
each sequence, where the second line contains the raw sequence. Since we are only
interested in the raw sequence, we discarded all other lines and also cleaned the
second line, such that it only contains the characters A, C, G, and T. (We simply
removed all other characters.) Note that our final file consists of a single line as we
want the size of the alphabet to be four. The FASTQ files are available at ftp:
//ftp.sra.ebi.ac.uk/vol1/fastq/DRR000/DRR#ID, where #ID is in the range from
000001 to 000426_1. Note that the #IDs are not continuous; not all #IDs are assigned,
and some #IDs are separated in two parts, which is denoted by an _1 and _2 suffix.
Throughout this dissertation, we denote this DNA sequence by DNA.

Proteins. UniProt (Universal Protein Resource) is a project that makes protein se-
quences and annotation data available. The UniProt Knowledgebase is a collection of
information on proteins and their sequences. It consists of a reviewed (Swiss-Prot) and
an unreviewed (TrEMBL) part. Since we are only interested in the sequences, we con-
catenated the files available at ftp://ftp.uniprot.org/pub/databases/uniprot/
current_release/knowledgebase/complete/uniprot_#ID.dat.gz. Here, #ID is ei-
ther sprot or trembl. We concatenated the files in that order (first sprot then trembl),
and removed all lines not containing sequences and all white spaces. We denote the
protein sequences by Prot.

Wikipedia. The Wikipedia is an online encyclopedia available in multiple languages
that makes all its (textual) content available for download. For our experiments, we
used the XML data of all pages in the most current version only, i. e., the files available
at https://dumps.wikimedia.org/#IDwiki/20190320/#IDwiki-20190320-
pages-meta-current.xml.bz2, where #ID is de, en, es, and fr. We concatenated the
files in the same order (first de then en, es, and fr). Throughout this dissertation, we
denote the Wikipedia dump by Wiki.

Detailed Information About the Texts
Since the structure of texts can be important for the behavior of our algorithms, we now
give detailed information about the texts described above. We give some commonly
used characteristics in Table 1.1. Here, we see the sizes of the alphabets and the total
size of the texts. Since we mostly consider byte alphabets, i. e., alphabets of size at
most 256, we use four real world text with different alphabet sizes. All information
about the text has been computed on the whole text. While we often use prefixes of
the texts as input, this still gives a good overview of the differences of the text.

10

crawl-data/CC-MAIN-2019-09/segments/1550247479101.30/wet/CC-MAIN-20190215183319-20190215205319-#ID.warc.wet
crawl-data/CC-MAIN-2019-09/segments/1550247479101.30/wet/CC-MAIN-20190215183319-20190215205319-#ID.warc.wet
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/DRR000/DRR#ID
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/DRR000/DRR#ID
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_#ID.dat.gz
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_#ID.dat.gz
https://dumps.wikimedia.org/#IDwiki/20190320/#IDwiki-20190320-
pages-meta-current.xml.bz2

1.4 EXPERIMENTAL SETUP

Table 1.1. Characteristics of the texts used in this dissertation: name of the text,
alphabet size σ, total text size n, and empirical entropy Hk for k ∈ [0, 3].

Name σ n H0 H1 H2 H3

CommonCrawl 243 196,885,192,752 6.19 4.49 2.52 2.08
DNA 4 218,281,833,486 1.99 1.97 1.96 1.95
Prot 26 50,143,206,617 4.21 4.20 4.19 4.17
Wiki 213 246,327,201,088 5.38 4.15 3.05 2.33

Now, we want to look at slightly more advanced measures for the complexity of a
text. To this end, we need additional notations. Let T be a text of length n over an
alphabet Σ = [0, σ). For any k ∈ N, Σk denotes all possible strings of length k that
can be constructed using any characters from Σ. Given an S ∈ Σk, we say TS is the
concatenation of all characters α in T in text order for which the substring Sα exists.
For example, if T = [1, 2, 3, 4, 1, 2, 3, 5, 1, 2, 3, 4], then T123 = [4, 5, 4].
This allows us to define the empirical entropy, which has been initially introduced

by Kosaraju and Manzini [KM99] to better analyze Lempel-Ziv (LZ) compression
algorithms. However, LZ compression algorithms also exploit repetitions that are far
apart, which is not measured by the empirical entropy.
Let Hist be the histogram of the characters in T , then the 0-th empirical entropy

is H0(T) := (1/n)
∑σ−1
i=0 Hist[i] lg(n/Hist[i]). The k-th empirical entropy is Hk :=

(1/n)
∑
S∈Σk |TS | · H0(TS). In other words, the k-th empirical entropy gives us an

asymptotic lower bound of the number of bits that we need to express a character
when considering it preceding k characters.

We have a special interest in H0, because our Huffman-shaped wavelet trees and
wavelet matrices that we present in Section 3.5 achieves the 0-th order empirical en-
tropy limit, i. e., it results in an optimal compression when compressing character
by character. We are also interested in H1, since our distributed suffix array con-
struction algorithm that we present in Section 5.4 behaves differently, depending on
two consecutive characters in the text, which corresponds to the 1-st order empirical
entropy.

Finally, let us take a look at the histograms of the texts that we depict in Figure 1.6.
Here, we can see that CommonCrawl and Wiki, and DNA and Prot, have a similar
structure, respectively. Both CommonCrawl and Wiki contain natural language, hence
characters that are part of the Latin alphabet occur more often. The main difference
between the two texts is that CommonCrawl has some smaller peaks for characters with
rank greater than 125. For DNA and Prot the similarities and differences are similar.
Due to the lager alphabet Prot has lower peaks. But those peaks are for characters
between ranks 65 and 90.

11

CHAPTER 1 INTRODUCTION

0 20 40 60 80 100 120 140 160 180 200 220 240 260

0

10

20

rank of character

nu
m

be
r

of
oc

cu
rr

en
ce

s
[%

]

CommonCrawl DNA Prot Wiki

Figure 1.6. Histograms of texts used as inputs in this dissertation (over the ASCII-
alphabet). We normalized the number of occurrences for better comparability.

1.5 CORRESPONDING PUBLICATIONS
A list of publications that are part of this dissertation is listed below, in Section 1.5.1,
including a description of the author’s contribution to them. In the list, we denote
work that has been published in conference proceedings by C.

It should be noted that all prior work has been revised by adding and rewriting text
to improve the clarity of the content, including new figures and examples to make
it easier to understand, and redoing all experiments to have the same setup for all
experiment throughout this dissertation.

1.5.1 Publications Contributing to this Dissertation
In Part I, we consider the wavelet tree and wavelet matrix construction. First, the
transformation from the wavelet tree to the wavelet matrix and the work on wavelet
tree and wavelet matrix construction described in Sections 2.4, 3.2 and 3.3 is based on

(C1) Johannes Fischer, Florian Kurpicz, and Marvin Löbel. “Simple, Fast and Light-
weight Parallel Wavelet Tree Construction”. In: 20th Workshop on Algorithm
Engineering and Experiments (ALENEX). Society for Industrial and Applied
Mathematics, 2018, pages 9–20.

The novel idea for the construction of wavelet trees and wavelet matrices has been
developed by Johannes Fischer and Florian Kurpicz together. A very prototypical
implementation was developed in a Bachelor’s thesis [Oes16] supervised by Johannes
Fischer and Florian Kurpicz. The final implementation is included in a framework for

12

1.5 CORRESPONDING PUBLICATIONS

wavelet tree and wavelet matrix construction that was coded by Florian Kurpicz, who
was supported by Marvin Löbel.

Next, in Section 3.4, we extended this idea to also work in semi-external and external
memory. To this end, we had to adapt the the computation of the wavelet tree to the
limitations of the external memory model (see Section 1.3.4). This section is based on

(C2) Jonas Ellert and Florian Kurpicz. “Parallel External Memory Wavelet Tree and
Wavelet Matrix Construction”. In: 26th International Symposium on String
Processing and Inforation Retrieval (SPIRE). volume 11811. Lecture Notes in
Computer Science. Springer, 2019, pages 407–416.

The general ideas for the external memory construction have been developed by Jonas
Ellert and Florian Kurpicz. The implementation is integrated in the framework
developed by Florian Kurpicz and Marvin Löbel and was coded by Jonas Ellert.

Part II is about suffix array construction. We mostly consider the distributed mem-
ory model (see Section 1.3.2) but we start with sequential algorithms in main memory,
as those are the foundation for all work on distributed suffix array construction. In
Chapter 4, the description of practical suffix array construction in main memory is
based on

(C3) Johannes Fischer and Florian Kurpicz. “Dismantling DivSufSort”. In: Prague
Stringology Conference (PSC). Department of Theoretical Computer Science,
Faculty of Information Technology, Czech Technical University in Prague, 2017,
pages 62–76.

The detailed description of the DivSufSort (implemented by Yuta Mori) has been
written by Florian Kurpicz, the idea to also induce the LCP array has been developed
by Johannes Fischer and Florian Kurpicz. The extension of DivSufSort—such that it
also computes the LCP array—was coded by Florian Kurpicz.
We also published the results of a project group, which is a course where up to

12 students work for two semesters on one project, that was supervised by Johannes
Fischer and Florian Kurpicz. The project was to build a framework that allows for
an easy comparison of suffix array construction algorithms, and that also includes all
publicly available suffix array construction algorithms. We use this framework to give
an overview of existing suffix array construction algorithms in Section 4.1.

(C4) Johannes Bahne, Nico Bertram, Marvin Böcker, Jonas Bode, Johannes Fis-
cher, Hermann Foot, Florian Grieskamp, Florian Kurpicz, Marvin Löbel, Oliver
Magiera, Rosa Pink, David Piper, and Christopher Poeplau. “SACABench:
Benchmarking Suffix Array Construction”. In: 26th International Symposium
on String Processing and Inforation Retrieval (SPIRE). volume 11811. Lecture
Notes in Computer Science. Springer, 2019, pages 392–406.

Most of the code was written by the students. The final paper was written (loosely
based on a report presented by the students [Bah+19a]) by Florian Kurpicz.
The work on distributed suffix array construction in Chapter 5 is based in the

following two publications

13

CHAPTER 1 INTRODUCTION

(C5) Timo Bingmann, Simon Gog, and Florian Kurpicz. “Scalable Construction of
Text Indexes with Thrill”. In: 2018 IEEE International Conference on Big Data
(BigData). IEEE Computer Society, 2018, pages 634–643, and

(C6) Johannes Fischer and Florian Kurpicz. “Lightweight Distributed Suffix Array
Construction”. In: 21st Workshop on Algorithm Engineering and Experiments
(ALENEX). Society for Industrial and Applied Mathematics, 2019, pages 27–38.

The first paper contains distributed suffix array construction algorithms implemented
using the distributed big data batch processing framework Thrill. Here, Florian
Kurpicz developed all prefix doubling algorithms and also described them in the paper.
The implementation and description of the recursive algorithms is the work of Timo
Bingmann. This work is also presented in Timo Bingmann’s [Bin18] dissertation. For
this dissertation, however, we conducted more experiments to incorporate the result
in our newer research, i. e., the paper (C6). Regarding the second paper, the idea to
distribute the DivSufSort was developed by Florian Kurpicz who was supported by
Johannes Fischer. The implementation has been coded by Florian Kurpicz.

Finally, we consider distributed full-text indices, i. e., more complex distributed
indices that are often built on top of suffix arrays. The distributed index presented in
Chapter 6 is based on

(C7) Johannes Fischer, Florian Kurpicz, and Peter Sanders. “Engineering a Dis-
tributed Full-Text Index”. In: 19th Workshop on Algorithm Engineering and
Experiments (ALENEX). Society for Industrial and Applied Mathematics, 2017,
pages 120–134.

Here, the idea to use an hierarchical distributed index based on Patricia tries, which can
easily be constructed in distributed memory using suffix array and longest common
prefix array, was developed by all authors together. The implementation of the
distributed full-text index that we present in this part was coded by Florian Kurpicz.

14

Part I

Shared and External Memory
Wavelet Tree Construction

15

CHAPTER 2
OVERVIEW OF

WAVELET TREE
CONSTRICTION

The wavelet tree is a compact data structure first presented by Grossi et al. [Gro+03]
that generalizes among others access(i) (character at position i), rank(i, α) (number
of occurrences of character α up to and including position i), and select(i, α) (position
at which the i-th α occurs) queries from a binary alphabet to alphabets of arbitrary
size σ. Using a wavelet tree answering those queries requires time O(lg σ).
We are also interested in the wavelet matrix, which was introduced by Claude et

al. [Cla+15] as an alternative representation of wavelet trees. Wavelet matrices can
answer the same queries that wavelet trees can answer in the same asymptotic time,
while requiring at most as much space as the wavelet tree. Wavelet trees can have
a huge space overhead, when the alphabet size is significant compared to the text
length, as we will see in the next section, and realizations that require the same space
as the wavelet matrix are slower than wavelet matrices in practice [Cla+15].
Wavelet trees and wavelet matrices are used for compression [Gro+11; Mak12], in

computational geometry as an alternative to fractional cascading [MN06], for text
indexing [Gro+03], variable length gap pattern matching [Bad+16], and to compute
the Burrows-Wheeler Transform [KK19]. They are also part of FM-indices [FM05],
making their efficient construction relevant for applications like DNA sequence as-
sembly [SD10] and again compression [Kär+16]. Additional information on further
applications can be found in multiple surveys [Fer+09; Gro+11; Mak12; Nav14].

Part I of this dissertation is focused is on the efficient construction of wavelet trees
and wavelet matrices in shared and external memory. It is based on our papers on
engineering shared memory wavelet tree and wavelet matrix construction [Fis+18],
their parallel construction in external memory [EK19], and on yet unpublished research
about Huffman-shaped wavelet trees and wavelet matrices. We first define the wavelet
tree and wavelet matrix in Sections 2.2 and 2.3. In Section 2.4, we show how to extend
wavelet tree construction algorithms such that they compute the wavelet matrix instead
in the same asymptotic time. Next, in Section 2.5, we look at existing wavelet tree
construction algorithms. Finally, in Chapter 3, we describe our novel wavelet tree and
wavelet matrix construction algorithms and provide an extensive evaluation.

17

CHAPTER 2 OVERVIEW OF WAVELET TREE CONSTRICTION

2.1 PRELIMINARIES

α

0 (000)2
1 (001)2
2 (010)2
3 (011)2
4 (100)2
5 (101)2
6 (110)2
7 (111)2

bit(α)

MSB LSB

Figure 2.1. Binary repre-
sentation of all characters
in Σ = [0, 8).

Let T = T [0] . . . T [n− 1] be a text of length n over an al-
phabet Σ = [0, σ). Each character T [i] can be represented
using dlg σe bits. The leftmost bit is the most significant
bit (MSB), hence the least significant bit (LSB) is the
rightmost bit. We denote the binary representation of a
character α ∈ Σ that uses dlg σe bits as bits(α), see Fig-
ure 2.1. Whenever we write a binary representation of
a value, we indicate it by a subscript two. The k-th bit
(from MSB to LSB) of a character α is denoted by bit(k, α)
for all 0 ≤ k < dlg σe.
The bit prefix of size k of α ∈ Σ are the

k most significant bits, i. e., bit_prefix(k, α) =
(bit(0, α) . . . bit(k − 1, α))2. We interpret sequences of bits
as integer values.
Let BV be a bit vector of size n. The operation

rank0(BV, i) returns the number of 0’s in BV[0, i), whereas
select0(BV, i) returns the position of the i-th 0 in BV. The operations rank1(BV, i)
and select1(BV, i) are defined analogously. Both rank and select queries on a bit vector
of size n can be answered in O(1) time using succinct dictionary data structures that
requires only o(n) bits space [Nav16].

Given an array A of n integers and an associative operator + (we only use addition),
the zero-based prefix sum for A returns an array B[0, n) with B[0] = 0 and B[i] =
A[i−1]+B[i−1] for all i ∈ [1, n). If not zero-based, B is usually defined as B[0] = A[0]
and B[i] = A[i− 1] +B[i− 1] for all i ∈ [1, n).

2.2 THE WAVELET TREE
Let T be a text of length n over an alphabet [0, σ). The wavelet tree [Gro+03] of
T is a complete and balanced binary tree. Each node of the wavelet tree represents
characters in [`, r) ⊆ [0, σ). The root of the wavelet tree represents characters in [0, σ),
i. e., all characters. The left (or right) child of a node representing characters in [`, r)
represents the characters in [`, (`+ r)/2) (or [(`+ r)/2, r), respectively). A node is a
leaf if l + 2 ≥ r.
Characters in [`, r) at the corresponding node v are represented using a bit vector

BVv such that the i-th bit in BVv is bit(d(v), T[`,r)[i]), where d(v) is the depth of v in
the wavelet tree, i. e., the number of edges on the path from the root to v, and T[`,r)
denotes the array containing the characters of T (in the same order) that are in [`, r).

There are two variants of the wavelet tree: the pointer-based [Gro+03] and the level-
wise [MN07] wavelet tree. The pointer-based wavelet tree uses pointers to represent
the tree structure, see Figure 2.2a. Therefore, it requires space for O(σ) pointers in
addition to the bit vectors and succinct dictionary data structures for the binary rank
and select queries.

18

2.2 THE WAVELET TREE

Σε = [0, 8)
0 1 3 7 1 5 4 2 6 3

0 0 0 1 0 1 1 0 1 0

Σ0 = [0, 4)
0 1 3 1 2 3

0 0 1 0 1 1

Σ1 = [4, 8)
7 5 4 6

1 0 0 1

Σ00 = [0, 2)

0 1 1

0 1 1
Σ01 = [2, 4)

3 2 3

1 0 1
Σ10 = [4, 6)

5 4

1 0
Σ11 = [6, 8)

7 6

1 0

(a) Pointer-based wavelet tree.

0 1 3 7 1 5 4 2 6 3

0 0 0 1 0 1 1 0 1 0
0 1 3 1 2 3 7 5 4 6

0 0 1 0 1 1 1 0 0 1
0 1 1 3 2 3 5 4 7 6

0 1 1 1 0 1 1 0 1 0

BV0

BV1

BV2

(b) Level-wise wavelet tree.

Figure 2.2. The pointer-based (a) and the level-wise (b) wavelet tree of T =
[0, 1, 3, 7, 1, 5, 4, 2, 6, 3]. The dark red () arrays contain the characters represented
at the corresponding position in the bit vector and are not a part of the wavelet trees.
In Figure 2.2a, Σα denotes the characters that are represented by the bit vector for
α ∈ {ε, 0, 1, 00, 01, 10, 11}. In Figure 2.2b, thick lines represent the starting positions
of the intervals. All this auxiliary information is not stored explicitly.

In the level-wise wavelet tree, we concatenate the bit vectors of all nodes at the same
depth in a pointer-based wavelet tree. Since we lose the tree topology, the resulting
bit vectors correspond to a level that is equal to the depth of the concatenated nodes.
We store only a single bit vector BV` for each level ` ∈ [0, dlg σe), see Figure 2.2b.
This retains the functionality from the pointer-based wavelet tree [MN06; MN07], but
reduces the redundancy for the succinct dictionaries needed to answer rank and select
queries on the bit vectors in constant time. The bit vectors that we concatenated to
obtain the level-wise wavelet tree form intervals within the resulting bit vector (of
the level-wise wavelet tree). The interval in a bit vector of a wavelet tree in which a
character is represented at level ` is encoded by its length-` bit prefix:

19

CHAPTER 2 OVERVIEW OF WAVELET TREE CONSTRICTION

Observation 2.1 (Fuentes-Sepúlveda et al. [FS+17]). Given a character T [i] for
i ∈ [0, n) and a level ` ∈ [1, dlg σe) of the wavelet tree, the interval in which T [i] is
represented in BV` can be computed by bit_prefix(`, T [i]).

There is also a variant of the level-wise wavelet tree, where in addition to the bit
vectors, we also store the starting positions of the intervals in the last level of the
wavelet tree. This variant is called the extended variant [CN08]. This version requires
σdlgne bits more space than the level-wise wavelet tree, but is also faster in practice.
The wavelet tree (both variants) can be used to generalize the operations access,

rank, and select from binary alphabets to alphabets of size σ. Answering these queries
then requires O(lg σ) time. To do so, the bit vectors of the wavelet tree are augmented
by binary rank and select data structures. For further information on queries we point
to [Cla+15; Nav16]. Throughout this dissertation, we refer to the level-wise wavelet
tree, whenever we speak about wavelet trees. All algorithms can be easily adopted
to compute the pointer-based wavelet tree or the extended version of the level-wise
wavelet tree instead.

2.3 THE WAVELET MATRIX
A variant of the wavelet tree, the wavelet matrix, was introduced in 2011 by Claude et
al. [Cla+15]. It requires the same space as a wavelet tree and has the same asymptotic
running time for access, rank, and select queries. But in practice it is often faster than
a wavelet tree for rank and select queries [Cla+15], as it needs fewer calls to binary rank
and select data structures. However, the fact that the wavelet matrix loses some nice
structural properties of wavelet trees—the tree structure to be precise—makes it harder
to compute, as divide-and-conquer wavelet tree construction algorithms, e. g. [Lab+17],
cannot simply be transformed to wavelet matrix construction algorithms.
For the definition of the wavelet matrix, we need additional notations: Reversing

the significance of the bits is denoted by reverse, e. g., reverse((001)2) = (100)2. The
bit-reversal permutation of order k (denoted by ρk) is a permutation of [0, 2k) with
ρk(i) = (reverse(bits(i)))2. For example, ρ2 = (0, 2, 1, 3) = ((00)2, (10)2, (01)2, (11)2).
ρk and ρk+1 can be computed from another, as ρk+1 = (2ρk(0), . . . , 2ρk(2k−1), 2ρk(0)+
1, . . . , 2ρk(2k − 1) + 1) and ρk = (ρk+1(0)/2, . . . , ρk+1(2k − 1)/2). In practice, we can
realize the division by a single bit shift.

The wavelet matrix has only a single bit vector BV` per level ` ∈ [0, dlg σe) like the
level-wise wavelet tree, but the tree structure is discarded completely in the sense that
we do not require each character to be represented in an interval that is covered by
the character’s interval on the previous level. In addition, we use the array Z[0, dlg σe)
to store the number of zeros at each level ` in Z[`]. Therefore, the wavelet matrix
requires dlg σedlgne bits in addition to the space required for the bit vectors and rank
and select data structure.

BV0 of the wavelet matrix contains the MSBs of each character in T in text order
(this is the same as the first level of a wavelet tree). For ` ≥ 1, BV` is defined as follows.
Assume that a character α is represented at position i in BV`−1. Then the position

20

2.3 THE WAVELET MATRIX

0 1 3 7 1 5 4 2 6 3

0 0 0 1 0 1 1 0 1 0
0 1 3 1 2 3 7 5 4 6

0 0 1 0 1 1 1 0 0 1
0 1 1 5 4 3 2 3 7 6

0 1 1 1 0 1 0 1 1 0

Z[0] = 6 Z[1] = 5 Z[2] = 4

BV0

BV1

BV2

Figure 2.3. The wavelet matrix of our running example T = [0, 1, 3, 7, 1, 5, 4, 2, 6, 3].
Again, the dark red () arrays contain the characters represented at the corresponding
position in the bit vector and are not a part of the wavelet matrix.

of its `-th MSB in BV` depends on BV`−1[i] in the following way: if BV`−1[i] = 0,
bit(`, α) is stored at position rank0(BV`−1, i), and otherwise (BV`−1[i] = 1), it is
stored at position Z[`− 1] + rank1(BV`−1, i). For an example of a wavelet matrix, see
Figure 2.3.
The intervals that occur in the bit vectors of a wavelet tree also occur in the bit

vectors of a wavelet matrix for the same text, see Figure 2.4. The bits and also the
characters represented by these bits are the same within these intervals—only the
order of the intervals differs between the wavelet tree and the wavelet matrix, the
content of the intervals is the same. Hence, the first two levels of a wavelet tree and
wavelet matrix are the same. To be more precise:

Observation 2.2. Given a character T [i] for i ∈ [0, n) and a level ` ∈ [1, dlg σe)
of the wavelet matrix, the interval pertinent to T [i] in BV` can be computed by
reverse(bit_prefix(`, T [i])).

This leads to a naive wavelet matrix construction algorithm, where BV`[i] =
bit(`, T ′[i]), where T ′ is T stably sorted using the reversed bit prefixes of length
` of the characters as key [Cla+15].

(ε)2

(0)2 (1)2

(00)2 (012) (10)2 (11)2

(a) Intervals of a wavelet tree.

(ε)2

(0)2 (1)2

(00)2 (10)2 (012) (11)2

(b) Intervals of a wavelet matrix.

Figure 2.4. Positions of the intervals in a level-wise wavelet tree (a) and in a wavelet
matrix (b). The intervals are identified by the bit prefix that all characters represented
by bits in the interval have in common. The first two levels are the same; the difference
is in the third level, where the order of (01)2 and (10)2 is interchanged.

21

CHAPTER 2 OVERVIEW OF WAVELET TREE CONSTRICTION

2.4 FROM THE WAVELET TREE TO THE WAVELET MATRIX
We can make use of the similarities between wavelet trees and wavelet matrices,
compare Observations 2.1 and 2.2, which we also depict in Figure 2.4, by showing that
every algorithm that can compute a wavelet tree can also compute a wavelet matrix
in the same asymptotic time.

Lemma 2.1. We can compute in-place an array X and a bit vector U with rank and
select data structures in time O(n+ σ) and space (n + σ)(1 + o(1)) + (σ + 2)dlgne
bits, such that BVWT

` [i] = BVWM
` [j] with

j =
{
i, if ` ≤ 1
X[2`−1 − 2 + bp] + off, otherwise

where BVWT
` and BVWM

` denote the bit vector of the wavelet tree and wavelet ma-
trix, respectively. Also, bp = prefix(`, rank0(U, select1(U, i + 1))) and off = i −
rank1(U, select0(U, bp� (dlg σe− `))), with � k denoting a left bit shift by k bits, i. e.,
affixing k zeros on the right hand side and then removing the k MSBs.

Proof. We require two auxiliary data structures for the transformation. The first one
is the bit vector U of length n+σ that stores the unary representation of the histogram
of all characters in T . The second one is an array X of size (σ + 2)dlgne bits, which
at first is used for counting, and later on stores the starting positions of all intervals
in the wavelet matrix.

To compute U we first count the number of occurrences of all characters and store
them in X such that X[i] = |{j ∈ [0, n) : T [j] = i}| for all i ∈ [0, σ). Then, the unary
histogram is given by U = 1X[0]01X[1]0 . . . 1X[σ−1]. In addition, we augment U with
a rank and select data structure. All this requires O(n+ σ) time and o(n + σ) bits
space in addition to U and X.
Next, we want to compute the starting positions of the intervals in the wavelet

matrix; we fill the array X with its final content. To this end, we must compute the
starting positions for intervals corresponding to bit prefixes of size ` with ` ∈ [2, dlg σe),
i. e., for all but the first level of the wavelet matrix. To this end, we compute the
number of occurrences of characters that share a bit prefix of size dlg σe − 1 in the
first dσ/2e − 1 positions of X. With the histogram information still in X, this can be
done by setting X[i] = X[2i] + X[2i+ 1] for all i ∈ [0, dσ/2e) in increasing order. We
set all other positions of X to zero.
Then, we compute the zero-based prefix sum with respect to ρdlgσe−1 of the first

dσ/2e−1 entries of X and store them in the last dσ/2e−1 entries of X. Here, “respect
to ρdlgσe−1” means that character ρdlgσe−1(i) follows character ρdlgσe−1(i− 1) for all
i ∈ [1, dσ/2e). In the same fashion, we compute the starting positions of the intervals
in all other levels: by first computing the number of occurrences of bit prefixes of size
k using the ones of size k + 1 and storing the zero-based prefix sum with respect to
ρdlg ke in the rightmost free entries of X. The σ + 2 entries (of size dlgne) in X are
sufficient to store the result at the back, where X still has unused entries.

22

2.4 FROM THE WAVELET TREE TO THE WAVELET MATRIX

Since the first entries of X can be empty (depending on σ), as we do not require the
histogram any more, we finally move the starting positions that we have stored at the
beck to the front, such that the first starting position is stored in X[0]. All this can
be done in O(σ) time without any additional space. Therefore, the construction of
U, building its augmenting rank and select data structure, and computing X requires
O(n+ σ) time and (n+ σ)(1 + o(1)) + (σ + 2)dlgne bits of space.
Now, we need to answer queries asking for a position j ∈ [0, n) in BVWM

` given a
position i ∈ [0, n) in BVWT

` for ` ∈ [0, dlg σe) in constant time, i. e., the position j in the
wavelet matrix corresponding to the position i in the wavelet tree. If ` ≤ 1 we know
that j = i, because the bit vectors of the wavelet tree and wavelet matrix are the same
for the first two levels. Otherwise (` > 1), the computation of the position j consists
of two steps. First, we determine the starting position of the interval in the wavelet
matrix (using X). Second, we compute the number of entries in the interval existing
before i (which is the same for wavelet tree and wavelet matrix, as the intervals are
the same):

1. We first need to identify the bit prefix of length ` corresponding to the interval
containing i. Note that we are only interested in the bit prefix and not in the
character c corresponding to position i. There are at least i−1 (or none, if i = 0)
characters occurring in T whose bit prefix of length ` is at most bit_prefix(`, c).
There are more than i − 1 characters if at least one character with bit prefix
bit_prefix(`, c) occurs after c in T . Therefore, c′ = rank0(U, select1(U, i+1)) has
the same bit prefix of length ` as c. To be more formal, bp = bit_prefix(`, c′) =
bit_prefix(`, c). Since we have stored all starting positions of the intervals on
level ` in the wavelet matrix in X[2`−2, 2`+1), the starting position is X[2`−2+bp].

2. Now we need to compute the offset of the position from the starting position
of the interval. To do so, we compute the smallest character contained in
the interval by padding the bit prefix with dlg σe − ` 0’s, giving us a value
r = select0(U, bp� dlg σe − `). Next, we determine the number of 1’s occurring
before the r-th 0 in U to compute the offset, i. e., off = i− rank1(U, r).

Since all operations used for querying require constant time and there is only a constant
number of operations, the query can be answered in constant time.

Before we give a detailed example of the construction and content of U and X during
all phases of the proof, and describe how we the use U and X to get from a position
in a wavelet tree to the position in the corresponding wavelet matrix on the next
page, we want to mention a recently published related result by Dinklage [Din19]
that extends our result. First, they show how to get from the wavelet matrix to the
wavelet tree, i. e., the other direction of Lemma 2.1. However, even though they are
able to do this in the same asymptotic time by using another array C that contains
the histogram of the text, which helps to identify the characters in the wavelet matrix,
they requires additional O(σ lgn) bits of space for the histogram. Then, they provide
another version of Lemma 2.1 where they require only O(n) time and require σ bits
less space, which however only works for effective alphabets.

23

CHAPTER 2 OVERVIEW OF WAVELET TREE CONSTRICTION

Example. Given our running example of T = [0, 1, 3, 7, 1, 5, 4, 2, 6, 3], we compute
the bit vector U and the array X. Whenever an entry in X changes, we highlight it
using a green background (). First, we compute the histogram of the characters in
the text, and also fill U with the histogram encoded in unary. We also compute the
rank and select data structure that augments U, which is not depicted.

0 1 2 3 4 5 6 7 8 9
1 2 1 2 1 1 1 1 0 0X =

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1U =

Next, we compute the histogram for all bit prefixes of size two (dlg σe − 1 in general),
i. e., (00)2, (01)2, (10)2, and (11)2. We store the histogram at the front of X.

0 1 2 3 4 5 6 7 8 9
3 3 2 2 0 0 0 0 0 0X =

Then, we compute the starting positions for the intervals in the third level of the
wavelet matrix using the histogram of bit prefixes that we have just computed. We
store the starting positions of the intervals at the back of X.

0 1 2 3 4 5 6 7 8 9
3 3 2 2 0 0 0 6 3 8X =

We repeat the last two steps, but this time, we consider the bit prefixes of size one,
which correspond to the second level of the wavelet matrix, and store them at the
front of X. Note that this is not necessary for the algorithm, as the first two levels of
the wavelet tree and wavelet matrix are the same, but we compute it here for the sake
of this example to show the general idea of the construction of X for multiple levels.

0 1 2 3 4 5 6 7 8 9
6 4 0 0 0 0 0 6 3 8X =

Then, we compute the starting positions of the corresponding intervals in the wavelet
matrix and store them at the rightmost free entries in X.

0 1 2 3 4 5 6 7 8 9
6 4 0 0 0 6 0 6 3 8X =

Finally, we move the starting positions of the intervals, which we currently have stored
on the back of the X, to the front and fill all unused entries with zeros.

0 1 2 3 4 5 6 7 8 9
0 6 0 6 3 8 0 0 0 0X =

24

2.5 RELATED WORK

As mentioned above, the first two levels of the wavelet tree and wavelet matrix are the
same, hence we give an example for the last level. We want to set the 8-th bit (i = 7) in
BVWT

2 to 0. Now, we need to compute the corresponding position j in BVWM
2 . To do so,

we first identify the position of the (i+ 1) = (7 + 1)-th 1 in U, i. e., p = select1(8) = 12.
The value represented by this position (rank0(12) = 5 = (101)2) may not correspond
to the value of the considered character, but it has the same bit prefix of length 2 as
the character. The length-2 bit prefix is bp = bit_prefix(2, rank0(14)) = (10)2 = 2.
Below, we show U with the number of zeros up to a certain position given in red (,
only below zeros in U) and the number of ones up to a certain position given in blue
(, only below ones in U).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1
1 1 2 3 2 4 3 5 6 4 7 5 8 6 9 7 10

U =

To get the first position in the interval in level 2, we need to pad the bit prefix with
dlg σe − ` = 1 zeros to get the smallest value with the bit prefix bp, i. e., (100)2 = 4.
Now we can compute the offset of the position with respect to the first position
of the interval. We identify the starting position of the interval containing 4, i. e.,
select0(4) = 9. Then we get the number of 1’s up to that position (rank1(9) = 6)
and subtract this value from i to get the offset, i. e., off = 7 − 6 = 1. Using the bit
prefix bp and the offset off, we can get the position where we have to set the bit using
X[22 − 2 + bp] + off = X[2 + 2] + 1 = 3 + 1 = 4. When we look at the wavelet tree
in Figure 2.2b and the wavelet matrix in Figure 2.3, we see that the 8-th bit in the
wavelet tree corresponds to the character 4 and the 5-th bit in the wavelet matrix (the
bit BVWM

2 [4]) also corresponds to the character 4, which concludes this example.

2.5 RELATED WORK
While wavelet trees and wavelet matrices are easy to compute naively, there exist many
more sophisticated algorithms that improve the running time compared to the trivial
O(n lg σ) time and minimize the space that is required in addition to the ndlg σe bits
for the bit vectors (ignoring space required for the supporting rank and select data
structures). In this section, we mainly focus on wavelet tree construction, as there
are—to the author’s best knowledge—no papers solely considering the wavelet matrix,
expect for its initial presentation [Cla+15] and the algorithms we present in Chapter 3.
Still, some wavelet tree construction algorithms can easily be modified to compute
the wavelet matrix instead of the wavelet tree.
First, in Section 2.5.1, we discuss sequential wavelet tree and wavelet matrix con-

struction algorithms. Then, in Section 2.5.2, we present parallel wavelet tree and
wavelet matrix construction algorithms that work in the parallel random-access ma-
chine. Last, in Section 2.5.3, we briefly discuss wavelet tree construction algorithms
in the semi-external memory model and the bulk-synchronous parallel model.

25

CHAPTER 2 OVERVIEW OF WAVELET TREE CONSTRICTION

2.5.1 Sequential Wavelet Tree Construction Algorithms
An overview of the sequential wavelet tree construction algorithms presented in this
section is given in Table 2.1, which contains the running times and the required
additional memory (in addition to the input and resulting wavelet tree) in bits of
the wavelet tree construction algorithms that we briefly describe below. Here, we
focus on practical algorithms that mostly have publicly available implementations.
Some theoretically interesting algorithms, e. g., the in-place construction algorithms
by Tischler [Tis11] are briefly touched in Section 2.5.3.

Grossi et al. [Gro+03] only use the wavelet tree as a building block that is part of
a more complex index. Therefore, only a general description of the structure of the
wavelet tree is given—no dedicated wavelet tree construction algorithm is described.
Still, computing the wavelet tree for a text of size n over an alphabet of size σ naively
in time O(n lg σ) is simple. To compute the level ` of the wavelet tree, we only have to
sort the text using the length-` bit prefix of the characters as sort key. If we compute
the wavelet tree top-down (starting with ` = 0 and then consecutively increasing ` by
one) and sort the text stably, we do not require an additional copy of the text. Since
this preserves the order of the text with respect to the required intervals on the next
level on each level. To obtain the same running time of O(n lg σ), we must sort the
text in linear time. To this end, we can simply use Counting sort. However, stable
Counting sort requires additional ndlg σe bits to store the sorted text [Sed98, p. 300].
This is similar to the naive wavelet tree construction algorithm, which we briefly

discuss due to its similarity. As we also consider the `-th significant bit on level ` of
the wavelet matrix, we only have to compute the different order of the intervals at
each level. Claude et al. [Cla+15] describe the idea behind constructing the wavelet
matrix naively as moving all zeros of a given level to the left, and all ones of the
level to the right, i. e., after the computation of the current bit vector we append all
characters represented by a zero to T0 and all other characters to T1, without changing
the order of the characters. Then, we continue with the text T = T0T1 as input for
the next level. This behavior can also be achieved by stably sorting the text using the
`-th significant bit as key (on level `). The running time and the required additional
memory is the same as for the naive wavelet tree construction algorithm: O(n lg σ)
time and ndlg σe bits in addition to the input and output to store the sorted text.
Shun [Shu15] presents a more sophisticated version of the naive wavelet tree con-

struction algorithm that provides practical improvements with respect to the naive
wavelet tree construction algorithm. Again, the wavelet tree is constructed top-down.
Each level ` (except the first) is computed based on the previous level ` − 1, using
the fact that we do not need to sort the whole text at once, but only the part of the
text covered by the interval that is split into two intervals on the current level. To
this end, the nodes are annotated with an offset and a length. The offset is the total
number of characters represented by preceding nodes on the same level and the length
is the number of characters represented by the current node. This information must
be computed on each level with an additional scan of the text. Then, the text can be
sorted while computing the bit vector of the level.

26

2.5 RELATED WORK

Table 2.1. Sequential wavelet tree and wavelet matrix construction algorithms in the
Word RAM Model [Hag98]. We use dashes (“—”) to mark algorithms for which no
analysis of the required additional space is conducted by the authors.

Reference Time Complexity Additional Space (bit)

naive O(n lg σ) ndlg σe
seq.serial [Shu15] O(n lg σ) —
[Cla+11] O(n lg σ) O(lgn lg σ)
[Bab+15] O(n lg σ/

√
lgn) —

[Mun+16] O(n lg σ/
√

lgn) —
[FS17]† O(n lg σ) αndlg σe+O(1)
[Kan18] O(n lg σ/

√
lgn) —‡

Section 3.2 O(n lg σ) 2σdlgne
† This is an online wavelet tree construction algorithm that does
not need to know the alphabet size σ in advance.
‡ The author states that in experiments the algorithm requires
twice as much memory (in total) as the algorithm that we present
in Section 3.2.1. No further analysis of the required space was
conducted by the author.

Babenko et al. [Bab+15] and Munro et al. [Mun+16] independently improved the
running time for wavelet tree construction algorithms to O(n lg σ/

√
lgn) by using

broadword programming techniques, i. e., applying operations to multiple integers
that all fit into one computer word at the same time. They describe the algorithm in
two phases:

(P1) Babenko et al. [Bab+15] first compute every τ -th level of the wavelet tree (those
levels are called big), for a constant τ ≥ 1, which requires O(n lg σ/τ) time. (The
first phase is not required, if τ > lg σ, as the root is the only big node.)

(P2) In the second phase, the small levels between the big ones are computed. Assume
that we want to compute the bit vectors for the levels between the i-th and
i+ 1-th big level (or the ones after the last big level). To this end, we only need
τ bits starting at the (iτ+1)-th bit for every character of the text. Therefore, for
each big level, it suffices to store the corresponding τ bits in τ -bit integers, which
allows us to represent blgn/τc characters in one computer word and process
them at the same time. Here, processing means that we write the currently
considered bit to the bit vector and split the words into two lists, depending on
this bit. Using these two lists, we can compute the next level, where we proceed
recursively. By choosing τ =

√
lgn we minimize the running time and get the

targeted running time of O(n lg σ/
√

lgn).

Munro et al. [Mun+16] describe the first phase based on L-ary wavelet trees. Here,

27

CHAPTER 2 OVERVIEW OF WAVELET TREE CONSTRICTION

we get the following alternative to Babenko et al.’s [Bab+15] algorithm:

(P1′) To get an L-ary wavelet tree, we do not split the alphabet into two parts for each
interval on each level, but into L-parts. Since each character could be pertinent
to one of L intervals in the next level, we use integers in [0,L) instead of bits
to represent the characters. Those integers are stored packed, i. e., blgn/ lgLc
integers can be stored in one computer word.

(P2′) In (P1′), we compute a different (implicit) representation of the big levels men-
tioned above in (P1). Therefore, the result of the first phase is the same, and
the second phase of this algorithm is the same as (P2).

In the context of these two theoretically fastest wavelet tree construction algorithms,
we also mention Kaneta’s [Kan18] recently presented wavelet tree construction algo-
rithms that bridge the gap between theory and practice and are based on the ones by
Babenko et al. [Bab+15] and Munro et al. [Mun+16]. Their main contribution is a
practical implementation of the broadword programming techniques using new CPU
instructions. Unfortunately, their implementation is not publicly available.

2.5.2 Parallel Wavelet Tree Construction Algorithms
Now, we have a look at parallel wavelet tree construction algorithms. We give an
overview of the algorithms, which we describe below, in Table 2.2. In addition to the
practical wavelet tree construction algorithms, we also briefly describe three primarily
theoretical algorithms by Shun [Shu17], as they are currently the best ones regarding
work and time complexity.

Shun [Shu15] presents two parallel wavelet tree construction algorithms that both
compute the wavelet tree top-down, i. e., from the first level to the last level. This
is the main difference compared to our parallel wavelet tree construction algorithms
that compute the wavelet tree bottom-up as we describe in Section 3.1.

1. Shun’s [Shu15] first parallel wavelet tree construction algorithm (par.level) com-
putes the histogram of each level in parallel. To this end, each processing element
first computes a local histogram for the text scanned by it. Then, a prefix sum
over all those local histogram yields the positions where the characters of each
processing element are represented in the level. Then, the text is scanned once
more—again in parallel—and the bit vector is created. Note that this approach
requires two scans of the text.

2. Shun’s [Shu15] second practical parallel construction algorithm is based on sort-
ing (par.sort). Again, the general idea is that we construct the wavelet tree top
down, i. e., from the first to the last level. For each level ` the text has to be
scanned three times: once for creating the histogram of the length-` bit prefixes
and their intervals, then a second time for sorting using the starting positions,
and a third time—now the sorted text has to be scanned—for the computation
of the bit vector. Note that we can sort the text in parallel.

28

2.5 RELATED WORK

Table 2.2. Shared memory parallel wavelet tree and wavelet matrix construction
algorithms in the Work-Time Model [JáJ92]. We use dashes (“—”) to mark algorithms
for which no analysis of the required additional space is conducted by the authors.
Algorithm Work (left) and Time (right) Complexity Additional Space (Bit)

par.level [Shu15] O(n lg σ) O(lgn lg σ) O(n lgn)
par.sort [Shu15] O(n lg lgn lg σ) O(lgn lg σ) O(n lgn lg σ)¶

par.rec [Lab+17] O(n lg σ) O(lgn lg σ) O(p lgn lg σ)
par.dd [FS+17] O(σn/ lgn+ n lg σ) O(lgn lg σ) O(n lg σ)
Section 3.3.1 O(n lg σ) O(n)† σdlgne
Section 3.3.2 O(lg σ(n+ pσ))‡ O(lg σ(n

p
+ lg p+ σ))‡ ndlg σe+ pσdlgne

Section 3.3.3 O(n lg σ + pσ) O(n
p

lg σ + lg p+ σ) ndlg σe+ pσdlgne

[Shu17]∗ O(n lg lgn lgσ√
lgn lg lgn

) O(lgn lg σ) —

[Shu17]∗ O(n lgσ
δ
√

lgn
)§ O(n

δ lgσ
δ
√

lgn
)§ —

[Shu17] O(n lgσ√
lgn

) O(σ + lgn) —

¶ By computing the wavelet tree level-by-level, instead of all levels in parallel, the additional
space can be reduced to O(n lgn) bits. However, this increases the time to O(lgn lg σ).
The work remains the same in both cases.
†We cannot use more than dlgne processing elements. See Section 3.3.1 for the reasons.
‡ This algorithm can efficiently use up to p ≤ n/σ processing elements. Using n/σ processing
elements yields O(n lg σ) work andO(lg σ(lgn+ σ)) time. When we employ more processing
elements we only increase the required work, without achieving a better running time.
∗ Both algorithms are based on parallel stable integer sorting. The difference in work and
time is a trade-off introduced by the used sorting algorithm.
§ For a constant δ ∈ (0, 1).

Fuentes-Sepúlveda et al. [FS+17] present a wavelet tree construction algorithm
using a meta-approach they call domain decomposition that we denote by par.dd.
Here, the general idea is that each processing element computes a partial wavelet tree
for a slice of the text. The slices are non-overlapping consecutive slices, such that by
concatenating them we obtain the text. We can compute the partial wavelet trees in
parallel. Then, we merge the partial wavelet trees—also in parallel—to obtain the final
wavelet tree. We describe this approach in detail in Section 3.3.3. There, we present
our domain decomposition framework that allows us to compute both wavelet trees
and wavelet matrices. For the computation of the partial wavelet trees, any sequential
wavelet tree construction algorithm can be used. Fuentes-Sepúlveda et al.’s [FS+17],
par.dd uses a slightly adopted version of Shun’s [Shu15] wavelet tree construction
algorithm seq.serial, see Section 2.5.1. Labeit et al. [Lab+17], too, present a domain
decomposition wavelet tree construction algorithm that uses a different merge function
compared with Fuentes-Sepúlveda et al.’s [FS+17] one.

29

CHAPTER 2 OVERVIEW OF WAVELET TREE CONSTRICTION

In addition to their domain decomposition wavelet tree construction algorithm,
Labeit et al. [Lab+17] present the previously fastest parallel wavelet tree construction
algorithm par.rec. It uses the operation split that, given a text T of length n and a
splitter function s : Σ → bool, generates two texts Ttrue and Tfalse such that for all
i ∈ [0..|{k ∈ [0..n) : s(k) = α}|) and α ∈ {true, false} we have Tα[i] = T [j] where j
is the only position that fulfills (i) s(T [j]) = α and (ii) |{k ∈ [0..j) : s(T [k]) = α}| = i.
Now, we split the text for each node (or interval) of the wavelet tree, such that the
resulting two texts correspond to the text that is represented at the nodes children.
To this end, we use

s`(α) =
{

true, bit(`, α) = (0)2

false, bit(`, α) = (1)2

as splitter function on level `. Now, the input text is always the text that is represented
at the corresponding node. With a scaling implementation of the split operation, we
can always employ all processing elements as follows: at the first level, we use all
p processing elements to split the text and compute the bit vector; then, on the
second level, we use a number of processing elements proportional to the sizes of the
two results of the previous split operations (but at least one processing element) to
compute the bit vectors of the intervals and split the considered text into two. In
total, all processing elements are used. This continues in the same fashion for each
following level, always proportionally to the sizes dividing the number of processing
elements available to split the text and compute the bit vector of the interval. Hence,
all processing elements are used throughout the computation.
Last, we discuss Shun’s [Shu17] work on parallel wavelet tree constuction, which

are the theoretically best ones. Also, they are based on ideas that have already been
described in Section 2.5.

1. The first algorithm is based on parallel integer sorting similar to par.sort. In
general, this (parallel wavelet tree construction) algorithm is a parallelization
of Babenko et al.’s [Bab+15] wavelet tree construction algorithm, which we
described in Section 2.5.1. The main idea is to use parallel integer sorting for
the computation of the big nodes in (P1). The parallel wavelet tree construction
algorithm has two variants that have a trade-off between work and time, as it can
achieve either O(lgn lg σ) time or O(nδ lg σ/δ

√
lgn) time. The work of those

algorithms is either O(n lg lgn lg σ/
√

lgn lg lgn) or O(n lg σ/δ
√

lgn). Here, the
parameter δ ∈ (0, 1) in the work and time complexity of the work-efficient-variant
comes from the use of a more work-efficient stable integer sorting algorithm with
worse time complexity [Vis10, p. 38]. The used (stable and parallel) integer
sorting algorithm is also the reason for the work-time-trade-off between the two
variants of this wavelet tree construction algorithm. As either a work-inefficient
algorithm, e. g., [Bha+91; Ram90], or an algorithm that is work-efficient but
does not parallelize as well, e. g., [Vis10, p. 38] can be used. For the second phase
(P2), we precompute lookup tables in parallel, which allow us to split the big
levels in parallel.

30

2.5 RELATED WORK

2. The second algorithm is based on domain decomposition, a technique that we
described ealier in this section. For the computation of the partial wavelet trees
they use a O(n lg σ/

√
lgn) time sequential wavelet tree construction algorithm,

e. g., [Bab+15; Kan18; Mun+16]. Then, they introduce boundary words that
allow for more independent computations during merging. Using these they
can lower the work to O(n lg σ/

√
lgn), which is lower than all other domain

decomposition approaches, i. e., [FS+17; Lab+17] and the one that we present
in Section 3.3.3.

2.5.3 Further Wavelet Tree Construction Algorithms
There also exist wavelet tree construction algorithms in other settings and models of
computation. In particular, we are aware of the following four settings and models.
We include all of these algorithms in our experiments if they have a publicly available
implementation. Only the distributed memory algorithms are parallel wavelet tree
construction algorithms. All other algorithms mentioned below are sequential.

Sequential In-Place Construction. While we can restore the text from the wavelet
tree, the access operation requires O(lg σ) time instead of the constant access time we
have if we store the text in addition to the wavelet tree. For many applications of the
wavelet tree, for example the FM-index [Gro+03], we would like to have constant time
access operation to the text after the construction of the wavlete tree. Still, Claude
et al. [Cla+11] and Tischler [Tis11] developed in-place wavelet tree construction
algorithms that overwrite the text with the wavelet tree. This reduces the total
amount of memory, as we do not need additional space for the wavelet tree anymore.
The space for the auxiliary binary rank and select data structures is still needed.

1. Claude et al. [Cla+11] present two algorithms, a very space efficient one with
running time O(n lgn lg2 σ) and additional space requirements of O(lg σ lgn)
bits, and another one with faster running time O(n lg2 σ) that, however, requires
n+O(lg σ lgn) additional bits, and

2. Tischler [Tis11] presents two algorithms with running times O(σλ2n+ λn lg c)
and O(λn lg c) that have space requirements of O(

√
n(λ+ lgn)/c)+O(lgn) and

O(
√
n(λ+ lgn)/c) + O(λ(lgn+ lg λ)) for constants λ = dlg(σ + 1)e and c > 0.

The author is not aware of any implementation of either of these sequential in-place
wavelet tree construction algorithms.

Sequential Semi-External Memory. For the semi-external memory model, we men-
tion the sequential wavelet tree and wavelet matrix construction algorithms that are
part of the SDSL [Gog+14a], as these algorithms in the SDSL work in semi-external
memory. Here, we also include seq.sdsl in our evaluation in Section 3.2.4.

31

CHAPTER 2 OVERVIEW OF WAVELET TREE CONSTRICTION

Parallel Distributed Memory. Recently, our wavelet tree construction algorithms
(which we describe in detail in Section 3.2) have been transformed to distributed
memory algorithms by Dinklage et al. [Din+20]. While they can use more processing
elements due to the model of computation, our parallel algorithms (Section 3.3) achieve
a higher throughput on the same number of processing elements, as reported by the
authors. Another improvement by Dinklage et al. [Din+20] is that they present the
first parallel (shared memory and distributed memory) wavelet matrix construction
algorithm whose memory requirements do not depend linearly on the alphabet size.

Sequential Online Construction. All wavelet tree construction algorithms that we
described up to this point heavily depend on the size of the alphabet during construc-
tion, i. e., some in their running time and all in their memory requirements. Fonseca
and Silva [FS17] present an online wavelet tree construction algorithm that does not
need to know the alphabet size or the effective alphabet in advance. To this end,
they compute the effective alphabet and build the tree structure dynamically such
that both (effective alphabet and tree structure) can easily be extended. Finally, the
dynamic tree structure is transformed to the final wavelet tree.

32

CHAPTER 3
ENGINEERING

WAVELET TREE
CONSTRUCTION

In this chapter, we present different wavelet tree and wavelet matrix construction
algorithms that are all based on a novel technique: the bottom-up computation of
wavelet trees and wavelet matrices (Section 3.1). With the bottom-up computation,
we can reduce the number of text accesses during the computation of the wavelet tree
or wavelet matrix, which significantly improves construction time in practice.
We then present three sequential (Section 3.2) and three shared memory parallel

(Section 3.3) wavelet tree construction algorithms based on this technique. All these
algorithms can easily be adapted to compute the wavelet matrix instead, making the
parallel ones the first practical parallel wavelet matrix construction algorithms. We
also present the first external memory wavelet tree and wavelet matrix construction
algorithms (Section 3.4). Here, we use the basic idea of the bottom-up computation to
reduce the number of I/Os, as we compute all information required for the computation
in one scan of the text. Last, in Section 3.5, we discuss Huffman-shaped wavelet trees
and wavelet matrices, which are built on the Huffman encoded text. This results in
wavelet trees and wavelet matrices that can have bit vectors that are shorter than the
uncompressed input text. To retain functionality, we use special Huffman codes.

3.1 BOTTOM-UP COMPUTATION OF HISTOGRAMS
As mentioned before, the idea of our construction algorithms is to compute the wavelet
tree bottom-up. To this end, we first compute the histogram of characters of the text.
Using this histogram, we can compute the histograms for all levels without another
text access, and thus the starting positions of the intervals for any level ` of the wavelet
tree (or wavelet matrix) using a zero-based prefix sum (with respect to ρ` for wavelet
matrices) on the corresponding histogram. Generally speaking, if we have a histogram
of length-` bit prefixes, we can compute the histogram of the length-`− 1 bit prefixes,
as each entry in this new histogram is the sum of the two entries that have a common
length-`− 1 bit prefix in the old histogram. This does not require any text access, as
the bit prefix corresponds to the position of the entry in the histogram.

33

CHAPTER 3 ENGINEERING WAVELET TREE CONSTRUCTION

For example, the number of characters with bit prefix (01)2 is the total number of
characters with bit prefixes (010)2 and (011)2, since only these characters have the
common bit prefix (01)2. We give an extended example in Figure 3.1 below.

(000)2

(001)2

(010)2

(011)2

(100)2

(101)2

(110)2

(111)2

(00)2

(01)2

(10)2

(11)2

+

+

+

+

Figure 3.1. Computing his-
togram of bit prefixes of length
two from histogram of length three
bit prefixes. Common prefixes are
highlighted in dark red ().

Now, we briefly discuss the additional space
requirements of this technique. Given a text of
length n over an alphabet of size σ, the histogram
of all characters requires σdlgne bits of space. We
can reuse that space for all histograms at previ-
ous levels `, which need σdlgne/2dlgσe−` bits of
space and storing the starting positions requires
the same space as storing the histogram. Note
that we do not need a histogram for the first level,
and we also do not need the starting positions re-
sulting from the histogram of all characters. Since
we need at most dσ lgne/2 bits of space for the
histogram (of the last level) and the starting posi-
tions, and we can reuse the space when computing
both for the following level, we need σdlgne bits
of space for both the histogram and the starting
positions in total.
In the sequential setting, the computation of

all histograms and starting positions of the inter-
vals requires O(σ lg σ) time, which is dominated
by the O(n lg σ) running time of all sequential
wavelet tree and wavelet matrix construction algorithms that we present in the next
section. While this idea yields no theoretical improvement of the running time, in
practice, it saves up to one scan of the text for each level compared to other wavelet
tree construction algorithms, e. g., [FS+17; Shu15].

3.2 SEQUENTIAL CONSTRUCTION
Now, we employ the bottom-up construction in two different wavelet tree construction
algorithms. First, in Section 3.2.1, for every level, we compute the starting positions
of the intervals in a bottom-up fashion as described above, and fill the bit vector
accordingly. This results in a lot of random access to the bit vector, which is of no
major concern—except for cache misses—in the sequential setting. We also present
a variant of this algorithm, where we first compute all histograms and then fill all
bit vectors during a single scan of the text. In preparation for our parallel shared
memory algorithms, which are presented in Section 3.3, where random access on bits
is problematic, we also describe a second variant in Section 3.2.2, where the access
pattern to the bit vectors is a scan from left to right. However, we need random
read and write access to the text, which is easier to handle in the parallel setting.
All wavelet tree construction algorithms that we present in this section can easily be
adopted to compute the wavelet matrix instead (see Section 3.2.3).

34

3.2 SEQUENTIAL CONSTRUCTION

Algorithm 3.1. Wavelet tree construction with prefix counting (seq.pc)
Input :Text T of length n and the alphabet size σ.
Output :A bit vector BV` for each level ` ∈ [0, dlg σe) of the wavelet tree.

1 for i = 0 to n− 1 do
2 Hist[T [i]]++ // Compute histogram of the text (as basis for all other histograms).
3 BV0[i] = bit(0, T [i]) // Fill first level’s bit vector (characters’ MSB in text order).
4 for ` = dlg σe − 1 to 1 do // Construct other levels of the wavelet tree bottom-up.
5 for i = 0 to 2` − 1 do // Compute new histogram based the previous level’s one.
6 Hist[i] = Hist[2i] + Hist[2i+ 1] // Update the histogram in-place.
7 for i = 1 to 2` − 1 do // Get starting positions of intervals from new histogram.
8 Borders[i] = Borders[i− 1] + Hist[i− 1] // Update the positions in-place.
9 for i = 0 to n− 1 do // Fill the bit vector of the current level.

10 p = Borders[bit_prefix(`, T [i])]++ // Get and update position for bit.
11 BV`[p] = bit(`, T [i]) // Set the bit in the bit vector.

3.2.1 Prefix Counting
Our first wavelet tree construction algorithm (seq.pc, see Algorithm 3.1) starts with
the computation of the initial histogram Hist[0, σ) of the text (line 2). In addition, the
first level of the wavelet tree is computed, as it contains the most significat bits of all
characters in text order (line 3). While this way of contruction is not truly bottom-up,
we save an additional scan of the text to compute the bit vector for the first level.
After this, all other levels are computed bottom-up. This requires O(n) and σdlgne/2
bits space for the histogram.
Initially, we have a histogram for all characters in the text. During each iteration,

say at level `, we want to compute the histogram for all bit prefixes of length `− 1 of
the characters in the text. We compute these histograms as described in Section 3.1
by ignoring the last bit of the considered bit prefixes. As described before, we can do
so in O(σ) time using no additional space (lines 5 and 6).
Using the updated histogram that occupies σdlgne/2dlgσe−` bits, we compute the

starting positions of the intervals of the characters that can by identified by their
bit prefix of size ` − 1 for level ` with a zero-based prefix sum. We also require
σdlgne/2dlgσe−` bits to store these starting positions (array Borders in line 8). Again,
this requires O(σ) time and only σdlgne bits in total, as we can reuse the space used
during this step for the previouly considered level.
Last, we compute the bit vector for the current level `. To do so, we scan the text

once from left to right and consider the bit prefix of length ` − 1 of each character.
Now, we have stored the starting positions of all length-` bit prefixes in array Borders.
Thus, when we consider the characters in text order, we know where we have to set
the bit in BV`. We set it accordingly and update the starting position for characters
with the same bit prefix (lines 10 and 11). This requires no additional space and O(n)
time for each of the dlg σe levels.

35

CHAPTER 3 ENGINEERING WAVELET TREE CONSTRUCTION

Single Scan. Right now, we scan the text once for each level of the wavelet tree.
For each level, we scan the text from left to right and set bits at the corresponding
positions in the bit vector of the level. We can reduce the number of accesses to the
text if we compute all levels during a single scan of the text. To this end, we first
compute the histograms of all levels at the same time. Then, we compute the starting
positions for all intervals on all levels. Using these starting positions, we can fill the
bit vectors by scanning the text once again and considering all bit prefixes of each
character we read. This increases the required space to 2σdlgne bits compared to
seq.pc, as we must store all histograms at the same time. However, the asymptotic
running time remains the same. This variant reduces the number of scans of the text
but also increases the number of cache misses, as we access one bit in each bit vector.
We denote this extended version of seq.pc by seq.pc.ss.

Lemma 3.1. Algorithm seq.pc computes the wavelet tree of a text of length n over an
alphabet of size σ in O(n lg σ) time using σdlgne bits of space in addition to the input
and output. Algorithm seq.pc.ss computes the wavelet tree in the same asymptotic
time, requiring 2σdlgne bits of space in addition to the input and output.

3.2.2 Prefix Sorting
Our next wavelet tree construction algorithm (seq.ps, Algorithm 3.2) is very similar
to seq.pc, as we also compute the wavelet tree bottom-up and compute the histogram
of the characters first. The algorithms only differ in lines 9–11. Before, we scanned
the text and set this bits in the bit vector according to the Borders array. Now, for
each level `, we use Counting sort (line 9) with the length-` bit prefixes as keys to
sort the text, such that we can fill the bit vector from left to right (line 11). Since
Counting sort requires O(n) time, given the Borders array, the running time does not
differ with respect to seq.pc or seq.pc.ss. However, we cannot overwrite the text, as
we compute the wavelet tree bottom-up and would lose information of the text order
otherwise. Therefore, we must always keep the original text. We compute the bit
vectors from the sorted text and stable Counting sort requires additional ndlg σe bits
to store the sorted text [Sed98, p. 300]. This leads to the following running time and
memory requirements:

Lemma 3.2. Algorithm seq.ps computes the wavelet tree of a text of length n over an
alphabet of size σ in O(n lg σ) time using ndlg σe+ σdlgne bits of space in addition to
the input and output.

Our first algorithms seq.pc and seq.pc.ss compute the bits of each level of the wavelet
tree in text order, which results in random access on the bit vectors. With seq.ps, we
have the sequential variant of a wavelet tree construction algorithm that is easier to
parallelize than seq.pc, because the random access happens during the sorting of the
text (line 9). There, we access bytes, not bits. Thus, we can only cause false sharing,
but not race conditions, as each character is written exactly once by one processing
element. We describe the parallel version of seq.ps in Section 3.3.2.

36

3.2 SEQUENTIAL CONSTRUCTION

Algorithm 3.2. Wavelet tree construction with prefix sorting (seq.ps)
Input :Text T of length n and the alphabet size σ.
Output :A bit vector BV` for each level ` ∈ [0, dlg σe) of the wavelet tree.

1 for i = 0 to n− 1 do
2 Hist[T [i]]++ // Compute histogram of the text (as basis for all other histograms).
3 BV0[i] = bit(0, T [i]) // Fill first level’s bit vector (characters’ MSB in text order).
4 for ` = dlg σe − 1 to 1 do // Construct other levels of the wavelet tree bottom-up.
5 for i = 0 to 2` − 1 do // Compute new histogram based the previous level’s one.
6 Hist[i] = Hist[2i] + Hist[2i+ 1] // Update the histogram in-place.
7 for i = 1 to 2` − 1 do // Get starting positions of intervals from new histogram.
8 Borders[i] = Borders[i− 1] + Hist[i− 1] // Update the positions in-place.
9 T ′ = CountingSort(T,Borders, `) // Sort T using length-` bit prefixes as keys.

10 for i = 0 to n− 1 do // Scan the sorted text from left to right.
11 BV`[i] = bit(`, T ′[i]) // Set the bits in the bit vector from left to right.

3.2.3 Adaption to the Wavelet Matrix
When comparing the bit vectors of the (level-wise) wavelet tree and the wavelet matrix
at level `, we see two similarities. First, both bit vectors contain the `-th MSB of
each character of T and second, the bits are grouped in intervals with respect to the
bit prefix of size ` − 1 of the corresponding character. Within those intervals, the
represented characters appear in the same order. Thus, the number, the sizes, and
the content of the intervals are the same for the wavelet tree and matrix. Hence, the
only difference is the position of the intervals within each level, see Figure 2.4.

At level `, the intervals in BV` of a wavelet tree occur in increasing order with respect
to the bit prefixes of size ` of the characters in T , i. e., the first interval corresponds to
characters with bit prefix (0`)2, the second one to characters with bit prefix (0`−11)2,
and so on. On the other hand, the intervals in BV` of a wavelet matrix occur in
increasing order with respect to the bit-reversal permutation ρ` of the characters in T .
The first interval still corresponds to characters with bit prefix (0`)2, but the interval
corresponding to characters with bit prefix (0`−11)2 is the (2`−1 + 1)-th interval.

All our previously described wavelet tree construction algorithms (seq.pc, seq.pc.ss,
and seq.ps) can easily be adjusted to compute the wavelet matrix instead of the wavelet
tree. To this end, we only have to change the computation of Borders, see line 8 in
Algorithm 3.1 (seq.pc and seq.pc.ss) and line 8 in Algorithm 3.2 (seq.ps), since we store
the starting positions of the intervals in Borders. The change is also minor: we compute
the starting positions of the intervals using the bit-reversal permutation, i. e., the lines
mentioned above are changed to Borders[ρ`[i]] = Borders[ρ`[i− 1]] + Hist[ρ`[i− 1]].
Then, the resulting starting positions of the intervals for bit prefixes are in bit reversal
permutation order, i. e., the starting positions of the intervals for a wavelet matrix.
Therefore, all our wavelet matrix construction algorithms have the same running

time and memory requirements as their wavelet-tree-constructing counterparts.

37

CHAPTER 3 ENGINEERING WAVELET TREE CONSTRUCTION

3.2.4 Experimental Evaluation
We implemented all our sequential wavelet tree and wavelet matrix construction al-
gorithms. The code is available at www.kurpicz.org/wavelet. We use the hardware
setup described in Section 1.4.1 and conducted the experiments on LiDO.big nodes.
The code was compiled using GCC 7.3.0 with flags -O3 and -march=native. While
more recent compiler versions would be available, some parallel algorithms that we
compare our algorithms with in Section 3.3.5 require Cilk Plus, which was removed
from GCC starting with version 8.0.0, and we wanted to compile all code using the
same compiler. Our inputs are prefixes of the texts described in Section 1.4.2.
We also include the following wavelet tree construction algorithms, which we also

described in more detail in Section 2.5.1, in our experiments: (i) seq.naive is the naive
wavelet tree construction algorithm based on sorting, (ii) seq.serial was the previously
fastest sequential wavelet tree construction algorithm [Shu15], and (iii) seq.sdsl is
part of the frequently used Succinct Data Structure Library (SDSL) [Gog+14a]. One
wavelet tree (and wavelet matrix) construction algorithm that we could not include
here is that of Kaneta [Kan18], because the code is neither publicly available, nor
could it be provided by the author due to licensing issues. However, they only report
small improvements (on some inputs) while requiring more memory.

To be consistent with the already existing and evaluated wavelet tree construction
algorithms listed above, we first compute the effective alphabet from the input text,
start the timer, compute the wavelet tree (or wavelet matrix) for the text over the
effective alphabet, and stop the timer after all bit vectors have been computed. For
easier distinction between our sequential wavelet tree and wavelet matrix construction
algorithms, we mark the wavelet matrix construction algorithms with a .wm-suffix in
our plots. The rest of the name is identical.

28 30 32 34
100

200

300

400

input size lg n (B)

th
ro

ug
hp

ut
(M

ib
it/

s)

CommonCrawl

28 30 32 34

200

400

input size lg n (B)

DNA

28 30 32 34

200

300

400

input size lg n (B)

Prot

28 30 32 34
100

200

300

400

input size lg n (B)

Wiki

seq.naive seq.pc.ss seq.sdsl
seq.pc seq.ps seq.serial

Figure 3.2. Throughput of the sequential wavelet tree construction algorithms.

38

www.kurpicz.org/wavelet

3.2 SEQUENTIAL CONSTRUCTION

Construction Time. We measured the construction time of our wavelet tree and
wavelet matrix construction algorithms on different input sizes ranging from 256MiB
to 16GiB, and show the resulting throughput (number of bits computed per second)
in Figures 3.2 and 3.3. (Remember that timing starts as soon as the effective alphabet
has been loaded into main memory and ends as soon as all bit vectors have been
computed.) The time used to compute the throughput is the median running time of
five executions. In addition, we set a time limit of 2 hours for the five executions in
addition to another one to compute the memory peak. Missing data is either due to
exceeding the time limit or exhausting the available main memory.

First, we mention that the throughput does not differs a lot for the different inputs, as
we show the number of bits computed per second, which is independent of the number
of levels. On all inputs seq.pc is the fastest wavelet tree construction algorithm on
all inputs. The algorithm seq.pc.ss, which is based on seq.pc, is the second fastest on
all inputs but DNA. It is slower than seq.pc as it results in more cache misses than
seq.pc during the construction when inserting bits in all levels for each character—
instead of doing one level at a time. On DNA, seq.ps is the second fastest algorithm
and seq.pc.ss is the third fastest algorithm, and on all inputs but DNA, seq.ps is the
third fastest wavelet tree construction algorithm. The previously fastest algorithm
seq.serial is slower than our new three algorithms and also slower than seq.naive on
DNA. On inputs of size 16GiB, seq.pc is 1.56 times (Wiki), 1.58 times (CommonCrawl),
2.23 times (Prot), and 3.17 times (DNA) faster than seq.serial, the previously fastest
wavelet tree construction algorithm.

Our results are similar for the wavelet-matrix-computing counterparts seq.pc.wm,
seq.pc.ss.wm, and seq.ps.wm of the algorithms analyzed above. On average, their
running time is only 0.0061 % slower. This is due to the computation of the histograms
that we have to compute in bit reversal permutation order.

28 30 32 34
0

200

400

input size lg n (B)

th
ro

ug
hp

ut
(M

ib
it/

s)

CommonCrawl

28 30 32 34
0

200

400

input size lg n (B)

DNA

28 30 32 34
0

200

400

input size lg n (B)

Prot

28 30 32 34
0

100

200

300

400

input size lg n (B)

Wiki

seq.naive.wm seq.pc.ss.wm seq.sdsl.wm
seq.pc.wm seq.ps.wm

Figure 3.3. Throughput of the sequential wavelet matrix construction algorithms.

39

CHAPTER 3 ENGINEERING WAVELET TREE CONSTRUCTION

2

3

4

4.72
5

m
em

or
y

pe
ak

(B
/
n

)

CommonCrawl

1.25

2.25

4.25

5

DNA

1.63

2.63

3.63
4.25

5

Prot

2

3

4

4.75
5

Wiki

seq.naive seq.pc seq.pc.ss seq.ps
seq.sdsl [Gog+14a] seq.serial [Shu15] 1 + dlg σe/8

Figure 3.4. Snapshot of the memory peaks of sequential wavelet tree construction
algorithms for n = 231. We also depict is the memory required to store the text and
the wavelet tree (1 + dlg σe/8 bytes per character).

Memory Peak. The measured memory peaks of our wavelet tree and wavelet matrix
construction algorithms that we present in Figures 3.4 and 3.5 is normalized by the
input size. We only give the memory peaks for inputs of size 2GiB, because (i) since
we normalize the memory peaks, they are independent of the input size and (ii) this is
the maximum input size that all algorithms can process given the time and memory
constraints described earlier. We do not consider texts with large alphabets as none
of the algorithms can handle those as implemented.
Our algorithms seq.pc and seq.pc.ss have the smallest memory peak—they only

require the space for the input, output, and histograms—matching the theoretical
analysis. Due to the alphabet size, the histograms only require up to 2KiB in total,
which is 9.54·10−7 Bytes per character of the 2GiB input that is used here. Matching its
theoretical analysis, seq.ps requires exactly n lg σ bits more than seq.pc and seq.pc.ss.
Hence, it requires 1.5 times (CommonCrawl and Wiki), 1.6 times (Prot), and 1.8 times
(DNA) more memory than our other two wavelet tree construction algorithms.

The previously fastest sequential wavelet tree construction algorithm seq.serial
requires 1.8 times (DNA), 2 times (CommonCrawl and Wiki), and 2.23 times (Prot) as
much memory as seq.pc and seq.pc.ss. This makes seq.pc not only the fastest but also
the most memory efficient wavelet tree and wavelet matrix construction algorithm.

Above, we only analyze the memory peak of the wavelet tree construction algorithms,
as our wavelet matrix construction algorithms have exactly the same memory peaks
as the corresponding wavelet tree construction algorithms. The naive construction
algorithm seq.naive.wm requires around 5% more memory than seq.naive on all
instances but DNA where they have the same memory peak. The other algorithm,
seq.sdsl.wm, requires 1.4 times (DNA, Prot, and Wiki) and 1.6 times (CommonCrawl)
more memory than its wavelet-tree-constructing counterpart.

40

3.3 SHARED MEMORY CONSTRUCTION

2
3

5

8

m
em

or
y

pe
ak

(B
/
n

)

CommonCrawl

1.25
2.25

4.25

7

DNA

1.63

2.63

4.63

7

Prot

2

3

5

7

Wiki

seq.naive.wm seq.pc.wm seq.pc.ss.wm
seq.ps.wm seq.sdsl.wm [Gog+14a] 1 + dlg σe/8

Figure 3.5. Snapshot of the memory peaks of sequential wavelet matrix construction
algorithms for n = 231. We also depict is the memory required to store the text and
the wavelet matrix (1 + dlg σe/8 bytes per character).

3.3 SHARED MEMORY CONSTRUCTION
Now, we look at shared memory parallel wavelet tree construction algorithms. First, in
Section 3.3.1, we describe a naive parallelization of seq.pc that only scales up to dlg σe
processing elements. Therefore, we also parallelize seq.ps in Section 3.3.2, which scales
better. In Section 3.3.3, we look at the meta-approach domain decomposition [FS+17;
Lab+17], where we first construct partial wavelet trees for consecutive slices of the
text. We obtain the wavelet tree by merging the partial ones. Similarly to the last
section, we show that our parallel wavelet tree construction algorithms can be adapted
to compute the wavelet matrix instead (Section 3.3.4). Finally, in Section 3.3.5, we
give an experimental evaluation of these algorithms.

Parallel Histogram Computation
Before we look into the parallelization of our wavelet tree and wavelet matrix con-
struction algorithms, we first take a look at the parallel computation of histograms
and border positions, which heavily rely on computing prefix sums. It is well known
that we can compute the prefix sum of σ elements in parallel in time O(lg σ) with
O(σ) work, e. g., [JáJ92, p. 45].
This running time can be achieved using a two-phase algorithm based on a merge

tree. For simplicity let us assume that σ is a power of two. Each of the n elements
is represented by one leaf. Then, each other node contains the sum of its children.
The values of all parents that have children that contain a value can be computed in
parallel—going from the leaves to the root. This happens O(lg σ) times, as this is the
height of the tree. Hence, it is easy to see that we can fill all nodes in O(lg σ) time
and O(σ) work. We give an example of this step in Figure 3.6a.

41

CHAPTER 3 ENGINEERING WAVELET TREE CONSTRUCTION

1 3 3 2 3 2 0 5

4 5 5 5

9 10

19

(a) Result of the first phase of parallel prefix sum computation.

1 4 7 9 12 14 14 19

0 4 9 14

0 9

0

(b) Result of the second phase of parallel prefix sum computation, including updated leaves.

Figure 3.6. Two phases that we use to describe the computation of the parallel prefix
sum for [1, 3, 3, 2, 3, 2, 0, 5].

Next, we set the value of the root to 0. Then, the value of each right child is set to
the sum of its parent and its left sibling, and each left child’s value becomes the value
of its parent. In both cases, we add the value if the child is a leaf, see Figure 3.6b. As
the previous phase, this requires O(lg σ) time and O(σ) work.

However, in the following, we often want to compute a prefix sum of n = pσ elements,
where p is the number of processing elements and σ is the size of the alphabet of a
text (but we could use any other value, too). Now, the running time and work of
parallel prefix sum depends on the number of processing elements, because increasing
the number of processing elements also increases the number of elements that we want
to compute the prefix sum for. In this case, we can compute the parallel prefix sum
of pσ elements using p processing elements as follows.
First, we split the problem into p sub-problems. We denote these elements by

Xi[0..σ − 1] for processing element i ∈ [0, p). We then compute the prefix sums from
Xi. As the computation can be done in parallel, this first step requires O(σ) time
and O(pσ) work. Since all these prefix sums are computed independently, we need
another step to compute the final prefix sum over all elements. To this end, we
consider the values Xi[σ− 1], i. e., the rightmost elements of each sub-problem. There
are p such elements (one for each sub-problem) and now compute the prefix sum for

42

3.3 SHARED MEMORY CONSTRUCTION

X′ := X0[σ − 1] . . .Xp−1[σ − 1]. Using a simple parallel prefix sum, we can do so in
O(lg p) time and O(p) work. Finally, we have to add the result of this prefix sum to
all elements in Xi, i. e., for all i ∈ [1, p) and j ∈ [0, σ) we add X′[i − 1] to Xi[j]. All
in all, we achieve the following time and work for parallel prefix sums, which occurs
multiple times in the analysis of the following algorithms.

Observation 3.1. The parallel prefix sum over pσ elements requires O(σ + lg p) time
and O(pσ) work using p processing elements.

Note that Shun [Shu17, Theorem4.2] give an analysis for parallel prefix sum over
O(Pσ) elements for some P (which does not have to be the number of processing
elements) that requires O(lgP) time and O(Pσ) work. This is because they can
independently compute O(σ) prefix sums for P elements, as they are interested in
pointer-based wavelet trees. Thus they do not have to compute the starting positions
of the intervals in the bit vectors.

3.3.1 Parallel Prefix Counting
(.)2

(0)2 (1)2

(00)2 (012) (10)2 (11)2

PE 1

PE 2
...

PE dlg σe

Figure 3.7. Each PE computes one level.

It is embarrassingly easy to parallelize
seq.pc (Algorithm 3.1) such that each
processing element computes one level
of the wavelet tree, see Figure 3.7. To
this end, we first compute the his-
togram that is then used to compute
the starting positions of the intervals
of each level (both in parallel). On the `-th level, the starting positions require 2`dlgne
bits of space. With the starting positions, we can compute all bit vectors in parallel.
We denote the resulting parallel algorithm by par.pc.

Lemma 3.3. Algorithm par.pc computes the wavelet tree in O(n) time with O(n lg σ)
work requiring σdlgne bits of space in addition to the input and output.

The disadvantage of par.pc is that it cannot efficiently use more than dlg σe process-
ing elements. To use more processing elements, instead of parallelizing level-wise, we
could do the following. Each of the p processing elements gets a slice of the text of size
Θ(n/p) and computes the corresponding bits in the bit vectors on all levels. On level
`, each procssing element c first computes its local histogram Histc[0, σ) according to
the length-` bit-prefixes of the input characters. Using a parallel zero-based prefix
sum, these local histograms are then combined such that in the end, each processing
element knows where to write its bits (arrays Bordersc[0, σ) for c ∈ [0, p)). As in the
sequential algorithm, the final writing is then accomplished by scanning the local slice
of the text from left to right, writing the bits to their correct places in BV`, and incre-
menting the corresponding value in Bordersc. This comes with the problem that two or
more processing elements may want to concurrently write bits to the same computer
word (race conditions). To avoid this, one would have to implement mechanisms for
exclusive writes, which would result in unacceptably high running times.

43

CHAPTER 3 ENGINEERING WAVELET TREE CONSTRUCTION

3.3.2 Parallel Prefix Sorting

(.)2

(0)2 (1)2

(00)2 (012) (10)2 (11)2

PE 1 PE 2 . . . PE p

Figure 3.8. Each PE computes the
same slice of the bit vector on all levels.

Instead of having each processing element
write randomly to each bit vector, we want
each processing element to be responsible for
the same slice on each level of the wavelet
tree, see Figure 3.8. Those slices have size
Θ(n/p). To this end, we parallelize seq.ps (Al-
gorithm 3.2), which has also been the main
motivation for the sequential variant of the
algorithm. Now, we globally sort the input
text in parallel. The resulting sorted text Tsorted is then again split into parts of size
Θ(n/p). Then, each processing element scans its local slice from left to right and
writes the corresponding bits to the bit vector. Note that this is different from do-
main decomposition, a popular approach for parallel wavelet tree construction [FS+17;
Lab+17], which we discuss in Section 3.3.3. To avoid race conditions and false sharing,
we make sure that the size of each slice of the text is a common multiple of the cache
lines’ length and the size of a computer word.
The resulting parallel wavelet tree construction algorithm (par.ps, Algorithm 3.3)

works as follows: First, each of the p processing elements computes the local histogram
(Histc for c ∈ [0, p)) of its part of T and, at the same time, fills BV0 (lines 3 and 4). Then,
we compute the local starting positions (Bordersc for c ∈ [0, p)), using the parallel
zero-based prefix sum of Borders0[0],Borders1[0], . . . ,Bordersp−1[0], . . . ,Borders0[σ −
1], . . . ,Bordersp−1[σ − 1] (line 5). Using these starting positions, we can extract the
starting positions for all other levels by choosing every 2dlgσe−`-th entry on level `
(line 9). All in all, this requires O(n/p+ lg(pσ)) time, O(n+ pσ) work and pσdlgne
bits of space. Using this information (Histc and Bordersc), we can compute the
corresponding values of Bordersc for all levels ` ∈ [1, dlg σe) in time O(σ/p).

For each level (loop starting at line 6), the time and work required are the same as
during the first step. There is no additional space required since we reuse the space
used during the previous iteration. For the temporary starting positions Borders′c we
can use the space occupied by Hist. To sort the text, we use the local starting positions
to represent the intervals in counting sort (line 10). Storing the sorted text requires
additional ndlg σe bits of space, which we reuse at each level. After sorting the text,
each processing element can fill BV` accordingly (line 13).
Lemma 3.4. Algorithm par.ps computes the wavelet tree of a text of length n over an
alphabet of size σ in O((n/p) lg σ + σ + lg p) time and O(n lg σ + pσ)) work requiring
ndlg σe+pσdlgne bits of space in addition to the input and output using p < (n lg σ)/σ
processing elements.
This algorithm can efficiently use up to p ≤ n/σ processing elements. Using that

many processing elements yields O(n lg σ) work with O(lg σ (σ + lgn)) time. Employ-
ing more processing elements only increases the required work, without achieving a
better running time. In theory, better work could be achieved by using word packing
techniques, similar to [Bab+15; Kan18; Mun+16].

44

3.3 SHARED MEMORY CONSTRUCTION

Algorithm 3.3. Parallel wavelet tree construction with prefix sorting (par.ps)
Input :Text T of length n and the alphabet size σ.
Output :A bit vector BV` for each level ` ∈ [0, dlg σe) of the wavelet tree.

1 parfor c = 0 to p− 1 do
2 for i = cn

p
to (c+ 1)n

p
do

3 Histc[T [i]]++ // Compute histogram of the local part of the text.
4 BV0[i] = bit(0, T [i]) // Fill first level’s bit vector in parallel (characters’ MSB).
5 Bordersc =Parallel zero-based prefix sum on Histc // Global starting positions.
6 for ` = dlg σe − 1 to 1 do // For each level (from the last to the second).
7 parfor c = 0 to p−1 do // Get histogram for local part and current level in parallel.
8 for i = 0 to 2` − 1 do
9 Borders′c[i] = Bordersc[2dlgσe−`i]

10 Tsorted = parallel CountingSort(T, Borders′c)// Use starting positions to sort text.
11 parfor c = 0 to p− 1 do
12 for i = cn

p
to (c+ 1)n

p
do // Fill bit vector left to right using the sorted text.

13 BV`[i] = bit(`, Tsorted[i])

Using sorting for the parallel construction of wavelet trees has already been con-
sidered by Shun [Shu15] (par.sort). We gave a short description of their approach
in Section 2.5.2. The main difference between their algorithm and ours is that we
construct the wavelet tree bottom-up whereas they construct it tree top-down. This
allows us to save one scan per level, which does not affect the theoretical running time,
but is a huge improvement in practice, as we show in the evaluation in Section 3.3.5.

3.3.3 Domain Decomposition
The domain decomposition [FS+17; Lab+17] is a popular meta-approach for parallel
wavelet tree construction. Here, each processing element gets a consecutive slice of the
text of size Θ(n/p) and computes a partial wavelet tree for that slice. We can use any
sequential version of our wavelet tree construction algorithms, e. g., seq.pc, seq.pc.ss,
or seq.ps (see Section 3.2), to compute the partial wavelet trees. The final wavelet tree
is then computed by merging, which is more like a concatenation of intervals in the
bit vectors, all partial wavelet trees in parallel, which is described below. We call this
parallel algorithm par.dd.pc, par.dd.pc.ss, and par.dd.ps, depending on the sequential
algorithm used to compute the partial wavelet trees.

To merge the partial wavelet trees, we only have to concatenate the intervals of all
partial wavelet trees that correspond to the same bit prefix and store these concate-
nations (in the same order the corresponding bit prefixes occur in the partial wavelet
trees) at the correct level of the merged wavelet tree, see Figure 3.9. We can do so
in parallel by using the starting positions of the intervals of the partial wavelet trees
that have already been computed during their construction. To this end, a zero-based
prefix sum computes the starting positions of the intervals in the merged wavelet tree.
Then, each processing element writes its intervals at the corresponding positions.

45

CHAPTER 3 ENGINEERING WAVELET TREE CONSTRUCTION

T
pa

rt
ia
l

w
av
el
et

tr
ee
s

fin
al

w
av
el
et

tr
ee

. . .
PE 1 PE 2 . . . PE p

co
m

pu
te

w
av

el
et

tr
ee

co
m

pu
te

w
av

el
et

tr
ee

co
m

pu
te

w
av

el
et

tr
ee

. . .

. . .

. . .

. . .

.
.

parallel merge

Figure 3.9. Each PE considers a part of the text and computes a partial wavelet tree
for that tree, in parallel. Then, all partial wavelet trees are merged—again, in parallel.
To merge the partial wavelet trees, we concatenate the intervals representing the same
characters on each level. To highlight this, we colored the intervals and point from
the partial wavelet trees to the merged results (for the first two levels).

Here, we also avoid race conditions by choosing the starting positions of the merged
intervals according to the width of a computer word. As the computation of the partial
wavelet trees can be parallelized perfectly, we only require one parallel prefix sum, and
the merging is one parallel scan of all bit vectors. We do not merge in-place—thus
we need another ndlg σe bits for the final wavelet tree. When computing the partial
wavelet trees with seq.ps, we can reuse the space required for sorting the text.

Lemma 3.5. Algorithms par.dd.pc, par.dd.pc.ss, and par.dd.ps compute the wavelet
tree of a text T of length n over an alphabet of size σ in O(n/p lg σ + σ + lg p) time
and O(n lg σ + pσ) work requiring ndlg σe + pσdlgne bits of space in addition to the
input and output using p < (n lg σ)/σ processing elements.

3.3.4 Adaption to the Wavelet Matrix
All of our shared memory parallel wavelet tree construction algorithms can be adapted
to compute the wavelet matrix instead. We keep our naming scheme from the last
section and append the .wm suffix to denote wavelet matrix construction algorithms.
We can adapt par.pc (Section 3.3.1) in the same fashion we adapted its sequential

46

3.3 SHARED MEMORY CONSTRUCTION

Algorithm 3.4. Parallel wavelet matrix construction with prefix sorting
Input :Text T of length n and the alphabet size σ.
Output :A bit vector BV` for each level ` ∈ [0, dlg σe) of the wavelet matrix.

1 parfor c = 0 to p− 1 do
2 for i = cn

p
to (c+ 1)n

p
do

3 Histc[T [i]]++ // Compute histogram of the local part of the text.
4 BV0[i] = bit(0, T [i]) // Fill first level’s bit vector in parallel (characters’ MSB).
5 Bordersc =Parallel prefix sum w.r.t. ρdlgσe
6 for ` = dlg σe − 1 to 1 do
7 parfor c = 0 to p− 1 do
8 for i = 0 to 2` − 1 do
9 Histc[i] = Histc[2i] + Histc[2i+ 1]

10 Bordersc =Parallel prefix sum w.r.t. ρ` // w.r.t means in order ρ`[0], . . . , ρ`[2` − 1]
Tsorted = CountingSort(T , Borders) parfor c = 0 to p− 1 do

11 for i = cn
p

to (c+ 1)n
p

do
12 BV`[i] = bit(`,Tsorted[i])

counterpart in Section 3.2.3—using a zero-based prefix sum with respect to ρ` for level
`. This is sufficient, as each bit vector is computed by only one processing element.

To adapt par.ps (Section 3.3.2), we have to adjust the computation of the starting
positions because we lose the tree structure when we compute the wavelet matrix,
see Algorithm 3.4. Hence, we cannot compute the new starting positions from the
old ones (line 9). Instead, we have to update the histogram Histc for each processing
element c and for each level ` (loop starting in line 6). With the updated histogram,
we can compute the borders using a zero-based prefix sum with respect to ρ`, locally
on Histc. Since we have to compute the prefix sum for each level, we get:

Lemma 3.6. The wavelet-matrix-constructing counterpart of par.ps, par.ps.wm, re-
quires O(lg σ (n/p+ σ + lg p)) time and O(lg σ(n+ pσ)) work to compute the wavelet
matrix for a text of size n over an alphabet of size σ using p < n/σ processing elements.
The space requirements do not change compared to par.ps.

The parallel wavelet tree construction algorithms using domain decomposition that
we described in Section 3.3.3 are also easily adapted. To this end, we only have to
use sequential wavelet matrix construction algorithms to compute the partial wavelet
matrices. There is no need to change the merging of the partial wavelet matrices as long
as these intervals occur in bit-reversal permutation order, since we only concatenate
intervals on each level. See also Figure 3.9, where the merging is independent of the
content of the interval (or the considered bit prefix), as we only need the starting
positions of the intervals in the partial wavelet trees or wavelet matrices.

Thus, par.pc.wm and the domain decomposition algorithms have the same running
time, work, and memory requirements as their wavelet-tree-constructing counterparts.
For par.ps.wm, we give the running time in Lemma 3.6.

47

CHAPTER 3 ENGINEERING WAVELET TREE CONSTRUCTION

3.3.5 Experimental Evaluation
We implemented all of our parallel wavelet tree and wavelet matrix construction
algorithms that we described in the previous sections. The code of our algorithms and
the ones we compare them with is available at www.kurpicz.org/wavelet. We used
the hardware setup described in Section 1.4.1, conducted the experiments on LiDO.big
nodes, and use (prefixes of) the text described in Section 1.4.2 as inputs. As before,
the code was compiled using GCC 7.3.0 with flags -O3 and -march=native, because
even though more recent compiler versions were available at the time we conducted
these experiments all publicly available parallel wavelet tree construction algorithms
not implemented by us require Cilk Plus, which was removed from GCC starting with
version 8.0.0. Our algorithms express parallelism using OpenMP 4.5.

In addition to our algorithms that are described in this section, we also include the
following algorithms in our experiments that we described in Section 2.5.2:
par.dd is a parallel wavelet tree construction algorithm using domain decomposition

by Shun [Shu17],
par.level constructs the wavelet tree level-by-level in parallel and does not rely on

sorting by Shun [Shu15],
par.sort is a parallel algorithm based on sorting and computes the wavelet tree top-

down by Shun [Shu15], and finally
par.rec is the previously fastest parallel wavelet tree construction algorithm that splits

the text by Labeit et al. [Lab+17].
As for the sequential algorithms, we want to keep our evaluation coherent with

already existing experiments. Therefore, we first compute the effective alphabet from
the input text, start the timer, compute the wavelet tree (or wavelet matrix) for the
text over the effective alphabet, and stop the timer as soon as all bit vectors of the
wavelet tree (or wavelet matrix) have been computed. Again, we do not compute any
auxiliary binary rank and select data structures.

Construction Time. First, we report the construction time of the wavelet tree and
wavelet matrix construction algorithms. Here, we focus on the results of our wavelet
tree construction algorithms, which are depicted in Figure 3.10, as running times
and scalability of our wavelet matrix construction algorithms are nearly identical, see
Figure 3.11. In addition, the throughput of all algorithms does not depend on the
size of the input, as it is nearly identical regardless of whether we use inputs of size
256MiB, 512MiB, or 1024MiB per processing element. Therefore, in the following,
we only discuss data from experiments where we use inputs of size 1024MiB.

Then, we want to mention our slowest parallel algorithms par.pcand par.pc.ss. While
they do not scale up to 48 processing elements, they do scale up to dlg σe processing
elements (two for DNA, four for Prot, and eight for CommonCrawl and Wiki), which is
as expected and matches the theoretical analysis. The last algorithm that does not
scale well is par.ps, which is due to the overhead of stable parallel sorting.

48

www.kurpicz.org/wavelet

3.3 SHARED MEMORY CONSTRUCTION

1 2 4 8 16 32 48

0.1

1

10

Co
mm

on
Cr

aw
l

th
ro

ug
hp

ut
(G

ib
it/

s)
256 MiB per PE

1 2 4 8 16 32 48

0.1

1

10

512 MiB per PE

1 2 4 8 16 32 48

0.1

1

10

1024 MiB per PE

1 2 4 8 16 32 48

0.1

1

10

DN
A

th
ro

ug
hp

ut
(G

ib
it/

s)

1 2 4 8 16 32 48

0.1

1

10

1 2 4 8 16 32 48

0.1

1

10

1 2 4 8 16 32 48

0.1

1

10

Pr
ot

th
ro

ug
hp

ut
(G

ib
it/

s)

1 2 4 8 16 32 48

0.1

1

10

1 2 4 8 16 32

0.1

1

10

1 2 4 8 16 32 48

0.1

1

10

PEs p

Wi
ki

th
ro

ug
hp

ut
(G

ib
it/

s)

1 2 4 8 16 32 48

0.1

1

10

PEs p

1 2 4 8 16 32 48

0.1

1

10

PEs p

par.dd par.dd.pc.ss par.level par.pc.ss par.rec
par.dd.pc par.dd.ps par.pc par.ps par.sort

Figure 3.10. Weak scaling parallel wavelet tree construction experiments.

49

CHAPTER 3 ENGINEERING WAVELET TREE CONSTRUCTION

1 2 4 8 16 32 48

1

10

Co
mm

on
Cr

aw
l

th
ro

ug
hp

ut
(G

ib
it/

s)
256 MiB per PE

1 2 4 8 16 32 48

1

10

512 MiB per PE

1 2 4 8 16 32 48

1

10

1024 MiB per PE

1 2 4 8 16 32 48

1

10

DN
A

th
ro

ug
hp

ut
(G

ib
it/

s)

1 2 4 8 16 32 48

1

10

1 2 4 8 16 32 48

1

10

1 2 4 8 16 32 48

1

10

Pr
ot

th
ro

ug
hp

ut
(G

ib
it/

s)

1 2 4 8 16 32 48

1

10

1 2 4 8 16 32

1

10

1 2 4 8 16 32 48

1

10

PEs p

Wi
ki

th
ro

ug
hp

ut
(G

ib
it/

s)

1 2 4 8 16 32 48

1

10

PEs p

1 2 4 8 16 32 48

1

10

PEs p

par.dd.pc.wm par.dd.ps.wm par.pc.ss.wm
par.dd.pc.ss.wm par.pc.wm par.ps.wm

Figure 3.11. Weak scaling parallel wavelet matrix construction experiments.

50

3.3 SHARED MEMORY CONSTRUCTION

The other three parallel wavelet tree construction algorithms are all based on the
domain decomposition and share the same parallel merge routine. Therefore, un-
surprisingly, par.dd.pc is the fastest wavelet tree construction algorithm for all sizes,
number of PEs, and inputs but Wiki. On Wiki, the second fastest (on all other inputs)
algorithm par.dd.pc.ss is faster. This is no surprise considering that the algorithms
used to compute the partial wavelet tree in the domain decomposition are of similar
speed with seq.pc being faster than seq.pc.ss (see Section 3.2.4).
Now, let us focus on the throughput using one and 48 processing elements on

1024MiB input per processing element. We report detailed results in Table 3.1. Our
three domain decomposition algorithms are the three fastest algorithms on all inputs.
On all inputs but DNA, par.rec is the fourth fastest parallel wavelet tree construction
algorithm. It was previously the fastest one.
While our algorithms obtain the highest throughput of all parallel wavelet tree

construction algorithms, they do not have the highest speedup. To be precise, par.rec
achieves a speedup of 45.5, 27.4, 30.5, and 44.6 (on CommonCrawl, DNA, Prot, and
Wiki), whereas our algorithm with the best speedup only achieves a speedup of 26.2,
24.1, 20.8, and 27.1 (on the same inputs) using 48 processing elements. This is
consistent with the results previously reported [Fis+18]. However, due to further
engineering of our algorithms, i. e., reducing false sharing, par.dd.pc and our other
domain decomposition algorithms are now faster up to 48 cores.
On a related note, we want to mention the COST [McS+15] (see Section 1.3 for a

description) of all our parallel wavelet tree and wavelet matrix construction algorithms
is 2, as when using two processing elements, all parallel versions are faster than the
fastest sequential one (which is the same as executing our parallel algorithm using
only one processing element). The previously fastest algorithm par.rec has COST 4
on CommonCrawl and Wiki, and a COST of 8 on DNA, which shows that it has a higher
overhead, which makes it easier to achieve the better speedup.

Memory Peak. Now, we take a look at the memory consumption of the parallel
wavelet tree and wavelet matrix construction algorithms. We give the results in
Figure 3.12. There, we only give the results for algorithms using 48 processing elements
and processing 256MiB input per processing element. This is because (1) the memory
requirements increase when increasing the number of processing elements, making this
the harder case, and (2) due to their memory consumption, not all algorithms (par.dd,
par.sort, and par.level) finish the experiment when using 48 processing elements. Using
only 256MiB input per processing element allows us to include all algorithms but
par.sort in the plots.

The results of our wavelet tree and wavelet matrix construction algorithms match our
theoretical analysis. Our most memory efficient algorithms are par.pc and par.pc.ss,
which require nearly no additional space in addition to the input and output. Actually,
they only require the space for one histogram per level of the wavelet tree or wavelet
matrix. Next, par.dd.pc and par.dd.pc.ss require only space to merge the wavelet tree
(or wavelet matrix). For large alphabets (CommonCrawl and Wiki), they require as

51

CHAPTER 3 ENGINEERING WAVELET TREE CONSTRUCTION

much space as par.ps and par.dd.ps, which require more space on DNA and Protthan
par.dd.pc and par.dd.pc.ss. The previously fastest wavelet tree construction algorithm
par.rec requires up to twice as much memory as our most memory efficient algorithms
on all instances but DNA, where it requires only 1.8 times as much. Hence, our new
parallel wavelet tree and wavelet matrix construction algorithms are the most memory
efficient ones. However, the fastest (and best scaling ones) are not the most memory
efficient ones, but the fastest one (par.dd.pc) only requires up 1.5 times more memory.

12.04
CommonCrawl

2
3

4.04
5

m
em

or
y

pe
ak

(B
/
n

) 10.26
DNA

1.25
1.5

2.25
2.5

11.65
Prot

1.63
2.25
2.63

3.65
4.25

12.04
Wiki

2
3

4.05
5

par.dd par.dd.pc par.dd.pc.ss par.dd.ps par.level
par.pc par.pc.ss par.ps par.rec 1 + dlg σe/8

(a) Memory peaks for parallel wavelet tree construction.

2

3

m
em

or
y

pe
ak

(B
/
n

)

CommonCrawl

1.25
1.5

2.25

DNA

1.63
2.25
2.63

Prot

2

3

Wiki

par.dd.pc.wm par.dd.pc.ss.wm par.dd.ps.wm par.pc.wm
par.pc.ss.wm par.ps.wm 1 + dlg σe/8

(b) Memory peaks for parallel wavelet matrix construction.

Figure 3.12. Memory peaks of the parallel wavelet tree and wavelet matrix construc-
tion algorithms using 48 PEs and 256MiB input per PE. We use small inputs to have
results for par.dd, still we could not include par.sort. The memory required just for
the input text and the wavelet tree (1 + ddlg σe/8e bytes per character) is also shown.

52

3.3 SHARED MEMORY CONSTRUCTION

Ta
bl
e
3.
1.

T
hr
ou

gh
pu

t
(G

ib
its

/s
)
of

th
e
wa

ve
le
t
tr
ee

an
d
wa

ve
le
t
m
at
rix

co
ns
tr
uc

tio
n
al
go

rit
hm

s
in

ou
r
we

ak
sc
al
in
g

ex
pe

rim
en
t
w
he

n
us
in
g
on

e
(t

1)
or

48
(t

48
)
PE

s
an

d
10

24
M
iB

in
pu

t
pe

r
PE

.
W
e
gi
ve

th
e
re
su
lts

fo
r
32

PE
s
(t

32
)
on

Pr
ot

,a
s
th
is

is
lim

ite
d
by

th
e
te
xt

siz
e.

A
lg
or
ith

m
s
no

t
in
cl
ud

ed
in

th
e
lis
tin

g
ar
e
no

t
ab

le
to

co
m
pu

te
th
e
wa

ve
le
t
tr
ee

or
wa

ve
le
t
m
at
rix

in
th
is

se
tt
in
g.

W
e
m
ar
k
th
e
hi
gh

es
t
th
ro
ug

hp
ut

an
d
sp
ee
du

p
fo
r
ea
ch

in
pu

t
in

bo
ld
.

Co
mm

on
Cr

aw
l

DN
A

Pr
ot

Wi
ki

t 1
t 4

8
t 4

8/
t 1

t 1
t 4

8
t 4

8/
t 1

t 1
t 3

2
t 3

2/
t 1

t 1
t 4

8
t 4

8/
t 1

pa
r.d

d
0.
08

2.
94

38
.2
9

0.
10

2.
42

24
.9
1

pa
r.d

d.
pc

0.
39

10
.0

5
26
.0
4

0.
48

10
.3

4
21
.5
7

0.
41

8.
33

20
.2
2

0.
38

9.
89

26
.3
4

pa
r.d

d.
pc

.ss
0.
37

9.
78

26
.1
8

0.
37

8.
98

24
.0
8

0.
39

8.
14

20
.7
6

0.
37

10
.1

2
27
.0
6

pa
r.d

d.
ps

0.
35

7.
28

21
.0
1

0.
41

5.
48

13
.4
7

0.
38

6.
39

16
.7
3

0.
33

7.
40

22
.4
1

pa
r.p

c
0.
35

2.
34

6.
67

0.
44

0.
65

1.
48

0.
37

1.
51

4.
02

0.
35

2.
16

6.
27

pa
r.p

c.
ss

0.
35

2.
13

6.
01

0.
44

0.
65

1.
48

0.
37

1.
18

3.
14

0.
34

2.
13

6.
26

pa
r.p

s
0.
35

3.
86

11
.1
1

0.
41

2.
04

5.
03

0.
38

3.
41

8.
92

0.
33

4.
00

12
.1
0

pa
r.r

ec
0.
14

6.
47

45
.4

9
0.
10

4.
93

47
.4

4
0.
11

3.
26

30
.5

5
0.
13

5.
90

44
.6

4

pa
r.d

d.
pc

.w
m

0.
39

10
.0

2
25
.9
2

0.
48

10
.2

3
21
.3
9

0.
41

8.
27

20
.0

9
0.
38

9.
92

26
.4

6
pa

r.d
d.
pc

.ss
.w
m

0.
38

9.
84

26
.2

0
0.
39

9.
26

23
.9

2
0.
40

7.
90

19
.8
1

0.
38

9.
66

25
.7
1

pa
r.d

d.
ps
.w
m

0.
35

7.
62

21
.9
5

0.
41

5.
39

13
.2
8

0.
38

6.
15

16
.0
8

0.
33

7.
22

21
.8
6

pa
r.p

c.
w
m

0.
36

2.
32

6.
54

0.
44

0.
65

1.
48

0.
38

1.
49

3.
98

0.
35

2.
17

6.
25

pa
r.p

c.
ss
.w
m

0.
35

1.
83

5.
15

0.
44

0.
65

1.
49

0.
38

1.
25

3.
32

0.
35

2.
09

6.
05

pa
r.p

s.w
m

0.
31

3.
94

12
.6
9

0.
34

2.
03

5.
98

0.
33

3.
50

10
.6
7

0.
30

4.
27

14
.3
5

53

CHAPTER 3 ENGINEERING WAVELET TREE CONSTRUCTION

3.4 EXTERNAL MEMORY CONSTRUCTION
The inputs that all wavelet tree and wavelet matrix construction algorithms we have
seen so far can process is bounded by the size of the main memory. In this section, we
overcome these limitations by introducing different semi-external and fully external
memory wavelet tree and wavelet matrix construction algorithms. All these algorithms
make use of the bottom-up histogram computation (see Section 3.1), which allows
us to reduce the number of scans of the text. This property is especially useful in
external memory, since each disk access (even if it is just a scan) is expensive.

3.4.1 Sequential Construction in Semi-External Memory
In this section, we start with a brief discussion of how to adapt the sequential wavelet
tree and wavelet matrix construction algorithms from Section 3.2 to the semi-external
memory model, which we defined in Section 1.3.4. Remember that in the semi-external
memory model; we allow random access on either the input or the output—but not
both.

Random Access on the Input. First, we consider a modified and semi-external ver-
sion of the prefix sorting wavelet tree construction algorithm (seq.ps), see Section 3.2.2.
Here, each level of the wavelet tree is written in sequential order, which lets us ef-
ficiently stream the bit vectors of the wavelet tree to external memory. Again, we
precompute all borders of the intervals.
Then, for each level `, we use counting sort with the length-` bit prefixes as keys

to sort the text, such that we can fill the bit vector from left to right. Counting sort
requires O(n) time, given the borders array, hence the running time does not differ
from se.pc. Since we require a stable sort, we cannot sort the text in-place [Sed98,
p. 300] and thus need additional ndlg σe bits of space in main memory. We write the
output to disk exactly once, and each level is written sequentially. Therefore, the
number of I/Os is scan(ndlg σe). We call this algorithm se.ps.
To overcome the space requirements by sorting, we now describe a new in-place

algorithm that re-arranges the text as required by the wavelet tree in O(n) time. We
decompose the text into Θ(

√
n) blocks of size Θ(

√
n) and use two buffers of the same

size. Then, we separate the text using one buffer for symbols corresponding to a one
bit and the other for the other bits. Whenever a buffer is full, we can write it to an
already processed part of the text, which has already been written to the buffers. In
the end, we have to rearrange the blocks. We denote this variant by se.ps.ip. This
variant requires less space than se.ps, but due to the in-place re-arranging, it is one
of the slowest algorithms (see our evaluation in Section 3.4.4 for details).

Lemma 3.7. The semi-external algorithms se.ps and se.ps.ip compute the WT of a
text of length n over an alphabet of size σ in O(n lg σ) time using O(scan(ndlg σe))
I/Os, and ndlg σe + σdlgne (se.ps.ip) and 2ndlg σe + σdlgne (se.ps) bits of main
memory including input and output, respectively.

54

3.4 EXTERNAL MEMORY CONSTRUCTION

Random Access on the Output. Our second semi-external wavelet tree construction
algorithm is the semi-external variant of the single scan prefix counting wavelet tree
construction algorithm (seq.pc.ss), see Section 3.2.1. Here, we first compute the
histogram for all characters in the text and compute all histograms and interval borders
without another scan of the text in O(n) time, scan(ndlg σe) I/Os, and σdlgne bits
space in main memory, as described in Section 3.1.
Next, we scan the text once again and fill all the bit vectors accordingly using the

precomputed borders, i. e., for each symbol, we look at the border for each of the
symbol’s bit prefixes and set the corresponding bit in each bit vector accordingly (one
bit per level) and then we update the borders. This requires O(n lg σ) time in total for
all levels. Setting the bits in the bit vectors still requires random access, which is the
reason why this algorithm is only a semi-external memory wavelet tree construction
algorithm. Hence, we only read the text from the secondary memory. The number
of I/Os is 2 scan(ndlg σe). In terms of main memory, we need ndlg σe bits for the bit
vectors of the wavelet tree and σdlogne bits for histograms that are later used for the
starting positions of the intervals. We call this semi-external algorithm se.pc.
This algorithm can also be parallelized by parallelizing the computation of the

initial histogram and writing the bit vectors for each level in parallel, which scales up
to dlg σe processing elements. We denote this algorithm by se.par.pc.
Lemma 3.8. The semi-external algorithm se.pc computes the wavelet tree of a text
of length n over an alphabet of size σ in O(n lg σ) time using O(scan(ndlg σe)) I/Os,
and ndlg σe+ σdlgne bits of main memory including input and output, respectively.

Adaptation to the Wavelet Matrix. Our semi-external memory wavelet tree con-
struction algorithms can easily be extended to compute the wavelet matrix instead.
To this end, we only have to compute the borders in bit reversal permutation order
and thus change the order of the intervals within the bit vectors of each level, due to
the similarity of wavelet trees and matrices (see Section 2.3). Also, this change does
not affect the running time or the memory requirements; it only affects the content
of the border array and subsequently the resulting bit vectors.

3.4.2 Sequential Construction in External Memory
While the semi-external memory algorithms described above reduce the required
memory, the inputs we can process are still limited by the size of the main memory.
In this section, we describe fully external memory (see Section 1.3.4 for a definition
of the model) construction algorithms that dispose of these limitations.
If we replace the sorting in se.ps with any external memory sorting algorithm we

obtain an external memory version of se.ps. However, sorting in external memory
is expensive (in practice), and therefore not the best solution for external memory
wavelet tree construction. Now, we present dedicated external memory wavelet tree
and wavelet matrix construction algorithms. Unlike before, for the sequential algorithm
we first explain how to build the wavelet matrix, and then show how to adapt the
algorithm to produce the wavelet tree.

55

CHAPTER 3 ENGINEERING WAVELET TREE CONSTRUCTION

T0 = T = 0 1 3 7 1 5 4 2 6 3 −→
extract
bit(0, ·)

BV0= 0 0 0 1 0 1 1 0 1 0
stable sort
T0 by

bit(0, ·)

y
T1 = L0 ·R0 = 0 1 3 1 2 3 · 7 5 4 6 −→

extract
bit(1, ·)

BV1= 0 0 1 0 1 1 1 0 0 1
stable sort
T1 by

bit(1, ·)

y
T2 = L1 ·R1 = 0 1 1 5 6 · 3 2 3 7 6 −→

extract
bit(2, ·)

BV2= 0 0 1 0 1 1 1 0 0 1

Figure 3.13. Construction of the wavelet matrix for our running example T =
[0, 1, 3, 7, 1, 5, 4, 2, 6, 3] by partitioning the text, which is highlighted in dark red ()
on the left-hand side, and the extraction of bits on the right-hand side.

Each level ` of the wavelet matrix can be interpreted as a reordered version T` of
the original input text T , where the first level represents T0 = T , and each text T`
with ` > 0 can be obtained by stably sorting the text T`−1 of the previous level by the
(` − 1)-th bit. This property of the wavelet matrix has been originally described as
all zeros of the level go left, and all the ones go right [Cla+15]. If we know T`, then
we can easily build BV` by taking the `-th bit of each symbol of T` in left-to-right
order. Thus, we can construct the entire wavelet matrix by simply repeatedly sorting
the text and extracting the bit vector of one level after each sort. Conveniently, the
sorting key in each iteration is only a single bit. Therefore, we only have to create
a binary partition of the text, where L` contains all the zeros of T`, and R` contains
all the ones (retaining their order). Clearly, we have T`+1 = L` ·R`. In the external
memory setting we can realize the partitioning by performing a single scan over T`
and appending all characters α with bit(`, α) = 0 to L` and all other characters to R`.
Also, we can simultaneously write the bit vector BV` by appending bit(`, α) to BV`.
Note that after the scan no additional copying is needed to get T`+1 from L` and R`,
as we can simply scan directly over L` and R` in the next iteration, see Figure 3.13.
The number Z[`] of zeros in each level is |L`|.

Analysis. The input text and resulting wavelet structure are of size ndlg σe bits each,
which can be stored using scan(ndlg σe) blocks in external memory. The input text is
read exactly once (during the initial scan) and the resulting wavelet matrix is written
exactly once (one level per scan), causing 2·scan(ndlg σe) I/Os per level. The combined
size of L` and R` is ndlg σe bits. Since we have to split these bits into two separate
strings—a string pair—we might need one additional block in external memory, such
that at most scan(ndlg σe)+1 blocks of external memory are needed. The total number

56

3.4 EXTERNAL MEMORY CONSTRUCTION

of string pairs is dlg σe − 1 (one per scan except for the last scan), each of which is
written and read exactly once, resulting in (dlg σe − 1)(2 · scan(ndlg σe) + 2) I/Os for
all pairs. Therefore, the total number of I/Os used by our algorithm is bounded by
2 lg σ · scan(ndlg σe).

As we will see later, in terms of I/O complexity there is no difference between the
wavelet tree and wavelet matrix construction algorithm. Each of our data structures
(input, output, and all string pairs) are accessed exclusively in sequential order. Also,
we only need to store two string pairs: one for the previous scan and one for the
current scan. If we keep these four strings as well as input and output on separate
disks, we have no concurrent and thus no random I/Os.

Now, we determine the time complexity and main memory bounds of our algorithm.
Clearly, each of the dlg σe scans takes O(n) time. Thus the overall time for the wavelet
matrix construction is O(n lg σ). In terms of space, the wavelet matrix construction
is fully external and only needs O(1) bits of main memory, since all data structures
are kept in external memory.

Lemma 3.9. The fully external algorithm ext.ps computes the wavelet matrix of a
text of length n over an alphabet of size σ in O(n lg σ) time using a total of 2dlg σe ·
scan(ndlg σe) I/Os and O(1) bits of main memory including input and output.

Adaptation to the Wavelet Tree. Our external wavelet matrix construction algo-
rithm can easily be adapted to construct the wavelet tree instead. As described in
Section 2.3, the bit vector belonging to any interval of the wavelet tree always occurs
in the wavelet matrix, too. Only the order of these intervals is different. Our L` and
R` buffers therefore already contain all the correct intervals, but in wrong order. It is
easy to see that L` contains exactly all of the left children, whereas R` contains the
right children. Clearly, instead of defining T`+1 = L` · R` at the end of each scan, we
can define T`+1 by interleaving L` and R` such that left children and right children
alternate. This way we will continue with the correct WT order in the next scan. To
this end, we only need to know the size of each interval, allowing us to always read
the appropriate number of characters from L` or R`. Hence, we simply determine
the last level’s histogram during the initial scan. After the scan we can compute all
histograms in the bottom-up fashion, see Section 3.1. We simply keep the histograms
of all levels in main memory.

For the wavelet tree we need dσ lgne additional bits to store the histograms, as we
explained in Section 3.1. The wavelet tree construction needs additional O(σ) time
to compute the histograms of all levels, resulting in the following lemma.

Lemma 3.10. The external algorithm ext.ps computes the wavelet matrix of a text
of length n over an alphabet of size σ in O(n lg σ + σ) time using a total of 2dlg σe ·
scan(ndlg σe) I/Os and 2dσ lgne bits of main memory including input and output.

57

CHAPTER 3 ENGINEERING WAVELET TREE CONSTRUCTION

PE 1 b0 b3 b6

PE 2 b1 b4

PE 3 b2 b5

Figure 3.14. Domain decomposition for a text T = b0 b1 b2 b3 b4 b5 b6 split into
seven segments. Here, we use to denote that segment bi is loaded from external
memory, represents the computation of the partial wavelet tree for segment bi,
and means writing the partial wavelet tree of segment bi to external memory.
Only one of the three PEs is allowed to read/write at a time, as indicated by the
dashed synchronization barriers.

3.4.3 Parallel Construction in External Memory
For a more generic approach, we present a meta-algorithm based on the internal
memory domain decomposition, see, e. g., Section 3.3.3 and [FS+17; Lab+17]. Let p
be the number of available processing elements, then in the internal memory setting
we split the text into m · p segments, and compute the wavelet tree of each segment
on a different processing element, using a sequential construction algorithm of our
choice. We use the factor m to determine the length of the segments that is relevant
for the required main memory. The details are described below. After that, the so
called partial trees can be merged into one global tree, see Figure 3.9 for an example.

In the external memory setting the length of the segments depends on the amount
M of main memory. Assume that the sequential construction algorithm needs s(n, σ)
bits of memory for a text of length n over the alphabet [0, σ). Then, the length k of
each segment must satisfy s(k, σ) ≤M/p. This way all processing elements can work
simultaneously.

Each processing element runs a simple loop: load the next text segment from external
memory into internal memory, compute the wavelet tree of the segment, and write it
back to external memory. Only one processing element is allowed to read/write at a
time (see Figure 3.14). In terms of external memory layout, we store the partial trees
in text order, i. e., the partial tree of the second segment is stored right before the
partial tree of the first segment, and so on. Here, each partial tree as the concatenation
of its levels (see LT in Figure 3.15).
When merging the partial trees into the global tree, we simply perform a single

scan over the partial trees and concatenate the corresponding intervals. Since the
length of each interval must be known in order to copy the right amount of bits, we
need the histograms of all text parts during the merge phase. However, many of the
fastest sequential wavelet tree construction algorithms either build the histograms or
can easily be modified to do so, e. g., all wavelet tree construction algorithms that we
presented in Section 3.2. We are not using parallelism during the merge phase, since
we are only copying bit vectors. In practice, in this step, we are limited by the speed
of the external memory, even when using only a single processing element.

58

3.4 EXTERNAL MEMORY CONSTRUCTION

GT

PT

WT of part b0
BV0 BV1 BV2

WT of part b1
BV0 BV1 BV2

WT of part b2
BV0 BV1 BV2

BV0 BV1 BV2

Figure 3.15. External memory layout of partial (PT) and global (GT) WTs for
T = b0b1b2. Best viewed in color, as colors indicate parts of partial trees that are
zipped together.

Analysis. First, let us analyze the I/O complexity of our meta-algorithm. The input
text, the concatenation of all partial trees as well as the global tree are of size ndlg σe
bits each, which can be stored using scan(ndlg σe) blocks in external memory. We
read the input text and write the partial trees once, taking 2 scan(ndlg σe) sequential
I/Os. Reading all partial trees sequentially during the merge phase causes another
scan(ndlg σe) I/Os. When writing the global tree we jump to a different external
memory address for each interval of a partial tree. Hence, we need up to σdn/ke
random I/Os in addition to the scan(ndlg σe) I/Os that are generally needed to write
the global tree. Thus, the total number of I/Os is bound by 4 scan(ndlg σe) + σdn/ke.
In practice we use the entire internal memory as a write buffer while merging the
partial trees. This way we maximize the length of sequential writes and keep random
I/Os at a minimum.
Now we determine the time complexity of our algorithm as well as the internal

memory bounds. Let t(n, σ) and s(n, σ) be the time and the bits of memory used by
the sequential construction algorithm that we deploy as a subroutine. We know that
at any given point in time there is either exactly one processor performing I/Os, or
all processing elements are computing partial trees. The total I/O time (including
the merge phase) is bound by O(n+ σdn/ke). The time during which all processing
elements are computing partial trees is bound by dn/pke · t(k, σ). In terms of main
memory we use p·s(k, σ) bits for up to p simultaneous executions of our internal memory
construction algorithm over text segments of size k. Additionally, O(dn/keσ lgn) bits
are needed to store all histograms. Alternatively, we could write the histograms to
disk and only load the one that we need, reducing the required space but increase the
number of I/Os.

Lemma 3.11. Let t(n, σ) and s(n, σ) be the time and space used by an internal
memory wavelet tree construction algorithm, p be the number of processing elements
available, M the size of the main memory, and m ∈ N+ such that n/(mp) < M/p.
Then, the external memory algorithm ext.dd computes the WT of a text of length n over
an alphabet of size σ using 4 scan(ndlg σe) + σdn/ke I/Os. It takes O(n+ σdn/ke) +
dn/pke · t(k, σ) time and O(dn/keσ lgn) + p ·s(k, σ) bits of internal memory including
input and output.

59

CHAPTER 3 ENGINEERING WAVELET TREE CONSTRUCTION

Adaptation to the Wavelet Matrix. Adapting this ext.dd to compute the wavelet
matrix is simple. The only change necessary is to use a wavelet matrix construction
algorithm as a subroutine. If we do so, the time, memory, and I/O bounds described
in Lemma 3.11 hold for the corresponding wavelet matrix construction algorithm given
that we use an algorithm with the same time and memory bounds.

3.4.4 Experimental Evaluation
As with all algorithms before, we implemented all our semi-external and external
wavelet tree and wavelet matrix construction algorithms. Our implementations are
available at www.kurpicz.org/wavelet. Unlike before, we did not conduct the exper-
iments on nodes of the cluster, but on our external memory system that we described
in Section 1.4.1. Here, we can choose between two configurations that either consist
of hard disk drives (Ext.hdd) or solid state drives (Ext.ssd).
Our external memory algorithms use the STXXL [Dem+08b] development snap-

shot (26-09-2017). We compiled all source code using GCC 7.4 with flags -O3 and
-march=native, and express parallelism using OpenMP 4.5.

Evaluation of Semi-External Memory Algorithms
We compare the following semi-external memory wavelet tree construction algorithms:
(i) se.pc, (ii) se.pc, (iii) se.par.pc, (iv) se.ps, and (v) se.ps.ip and their wavelet-matrix-
constructing counterparts described in Section 3.4.1, (vi) seq.sdsl, the semi-external
memory algorithm contained in the SDSL, (vii) seq.pc, the fastest sequential main
memory wavelet tree construction algorithm (see Section 3.2.4), and (viii) par.dd.pc,
the fastest shared memory wavelet tree construction algorithm. The last two algo-
rithms are used to get a baseline and expected to be faster. We show the results of
our experiments in Figures 3.16 and 3.17. However, we focus on the wavelet trees con-
struction, as the conclusions also hold for the wavelet matrix construction. Also, the
running times of Ext.hdd and Ext.ssd are nearly the same we discuss them combined.

Running Time. The first thing to notice is that the throughput of some algorithms
drops when the input size exceeds 8GiB. This is due to the memory requirements of
the algorithms, because the required memory is less than 16GiB, i. e., the size of the
RAM of our system and the operating system has to swap some data to disk because
it also requires RAM (less then 512MiB).
As expected, our shared memory algorithm par.dd.pc is the fastest (before it has

to swap). Then, se.par.pc is faster on CommonCrawl and Wiki, i. e., inputs with larger
alphabets. Otherwise, par.dd.pc remains the fastest (being more than 3 times faster,
as long as no swapping occurs). Another expected result is that the throughput of
our parallel semi-external algorithm se.par.pc on inputs with small alphabet is not
high. This shows on DNA and to some extend on Prot. We described the reasons for
this in Section 3.3.1.
Regarding our sequential algorithms, our main memory algorithm seq.pc is the

fastest on all instances. However, se.ps achieves up to 79% of seq.pc’s throughput

60

www.kurpicz.org/wavelet

3.4 EXTERNAL MEMORY CONSTRUCTION

(on Wiki). This is because—even though wavelet tree construction is simple—the
algorithms are all compute bound. The in-place version se.ps.ip is our slowest algorithm
on all inputs, which is due to the complex in-place sorting. On inputs with small
alphabets (DNA and Prot), se.pc is of similar speed as se.ps.ip; on CommonCrawl and
Wiki it is of similar speed as se.ps. The semi-external memory algorithm provided by
the SDSL is the slowest one we tested (on DNA and of similar speed as se.pc on all
other inputs).

Memory Peak. The memory peaks of all tested algorithms but seq.sdsl are (nearly)
constant when normalized by the input size. The slightly decreasing memory peak is
due to constant sized buffers whose relative size (relative to the input size) becomes
smaller with increasing input sizes.

In general, se.pc has the smallest memory peak. Its parallel variant se.par.pc requires
only slightly more memory, as each processing element has the constant size buffers,
i. e., they exist six times in our experiment. The memory peak of se.ps.ip only differs
from the former two with respect to the buffer sizes—when the input’s alphabet size
is large, i. e., on CommonCrawl and Wiki. However, when the resulting wavelet tree is
smaller, then it requires up to twice as much memory (DNA) as se.pc. Next, se.ps is
our fastest semi-external wavelet tree construction algorithm. Unfortunately, it also
requires the most memory of all our new algorithms; even more than seq.pc on all
inputs. Only seq.sdsl requires more memory and is even slower.

Evaluation of External Memory Algorithms
Our external (and parallel) wavelet tree and wavelet matrix algorithms are the only ex-
ternal memory construction algorithms for wavelet trees and wavelet matrices. Hence,
we cannot compare ext.ps and ext.dd or the corresponding wavelet matrix construction
algorithms with other algorithms and we only report construction times and I/Os. We
present the results of two experiments, first a strong scaling experiment and second
a weak scaling experiment. During the former we increase the size of the text while
keeping the number of used processing elements the same, i. e., one processing element
for our sequential algorithms ext.ps and ext.ps.wm and six processing elements for our
parallel algorithms ext.dd and ext.dd.wm. The latter experiment is only conducted
for our parallel algorithms, as we increase the number of processing elements together
with the input sizes.

We now look at the maximum throughput that we can achieve with our parallel
algorithms using Ext.ssd and Ext.hdd and denote those by ssd-max and hdd-max.
This throughput is what we achieve reading the text and the wavelet tree (or the
wavelet matrix) once and writing the wavelet tree (or wavelet matrix) twice, which are
exactly the external memory operations conducted by ext.dd (or ext.dd.wm)—without
any computation. Therefore, the throughputs ssd-max and hdd-max are strict upper
bounds for the throughput of our algorithms, because the algorithms also have to
compute the wavelet tree (or wavelet matrix) in addition to reading and writing data
from and to external memory.

61

CHAPTER 3 ENGINEERING WAVELET TREE CONSTRUCTION

In addition, we have two different versions of ext.dd and ext.dd.wm that we now
briefly describe. The difference between those two versions is only practical and has
no effects on the theoretical analysis of the algorithms.

1. In the traditional variant only one processing element is allowed to read or
write at the same time. Thus, processing elements may have to wait for other
processing elements to finish their I/Os. This is the default version, and we do
not give this version a special name.

2. The concurrent read and write version, however, allows for concurrent read and
write access by different processing elements. Hence, no processing element has
to wait for its I/Os. In this case the operating system has to schedule the read
and wrote access to external memory. We denote this version by (concr. R/W).

In the following, similarly to previous evaluations, we only consider the results of
the external memory wavelet tree construction algorithms, as they are nearly identical
to the results of the external memory wavelet matrix construction algorithms.

Strong Scaling. We use the strong scaling experiments to show that the throughput
of our algorithms does not depend on the input size. In Figures 3.18 and 3.19 we
show the throughput and I/Os of our external memory algorithms computing the
wavelet tree and wavelet matrix, respectively. Our parallel algorithm ext.dd uses all
six processing elements.
The sequential algorithm ext.ps is the slowest one. Here, the difference between

Ext.ssd and Ext.hdd is minimal, because the algorithms are compute bound and not
limited by the bandwidth with which we can read and write data to external memory.
For our parallel algorithms, however, there is a difference with the algorithms being
up to 30% faster on Ext.ssd than on Ext.hdd.
In addition, concurrent read and write increases the throughput on all instances

when using SSDs, whereas it actually reduces the throughput on HDDs. However,
concurrent reading and writing is only beneficial for larger inputs: at least 32GiB
of Prot, 64GiB of Wiki, 128GiB of DNA. On CommonCrawl, it is beneficial initially
(for 32GiB and 64GiB) but slower when processing 128GiB. Here, the wavelet tree
construction and wavelet matrix construction actually differ slightly.

Regarding the I/O operations: our parallel algorithm ext.dd requires less reads and
writes on all inputs but DNA than ext.ps. On the latter, due to the small alphabet size
we can sort very efficiently, such that ext.ps requires 11.13% less write and 33.39%
less read operations. However, even for Prot with σ = 27, ext.dd requires less reads
and writes, even though only 1.79 times as many read and 1.49 times as many write
operations. On CommonCrawl and Wiki it requires 2.25 times as much writes and 2.27
as many read operations.
Therefore, ext.dd is the overall better external memory wavelet tree construction

algorithm (compared to ext.ps). Additionally, in our weak scaling experiments (see
Figures 3.20 and 3.21) we report that ext.dd has a higher throughput than ext.ps even
on one processing element.

62

3.4 EXTERNAL MEMORY CONSTRUCTION

2
3
4

th
ro

ug
hp

ut
on

H
D

D
s

(G
ib

it/
s)

CommonCrawl

0.5 1 2 4 8 16
0

0.5

1
2
3
4

DNA

0.5 1 2 4 8 16
0

0.5

1
2
3
4

Prot

0.5 1 2 4 8 16
0

0.5

1
2
3
4

Wiki

0.5 1 2 4 8 16
0

0.5

1

2
3
4

th
ro

ug
hp

ut
on

SS
D

s
(G

ib
it/

s)

0.5 1 2 4 8 16
0

0.5

1
2
3
4

0.5 1 2 4 8 16
0

0.5

1
2
3
4

0.5 1 2 4 8 16
0

0.5

1
2
3
4

0.5 1 2 4 8 16
0

0.5

1

0.5 1 2 4 8 16
0

2

4

text size (GiB)

m
ai

n
m

em
or

y
pe

ak
(B

/
n

)

0.5 1 2 4 8 16
0

2

4

text size (GiB)
0.5 1 2 4 8 16

0

2

4

text size (GiB)
0.5 1 2 4 8 16

0

2

4

text size (GiB)

par.dd.pc seq.pc se.pc se.par.pc
se.ps se.ps.ip seq.sdsl

Figure 3.16. Throughput and main memory peaks of the semi-external wavelet tree
construction algorithms when using the HDDs (first row) and when using the SSDs
(second row). The parallel algorithms are using all 6 PEs. In the last row, we give
the main memory peak, which is independent of the used drive. Note that we also
measured running times for 6, 7, 14, and 15GiB, to show the algorithm’s behavior
close to maximum sized inputs that they can process on this hardware.

63

CHAPTER 3 ENGINEERING WAVELET TREE CONSTRUCTION

2
3
4

th
ro

ug
hp

ut
on

H
D

D
s

(G
ib

it/
s)

CommonCrawl

0.5 1 2 4 8 16
0

0.5

1
2
3
4

DNA

0.5 1 2 4 8 16
0

0.5

1
2
3
4

Prot

0.5 1 2 4 8 16
0

0.5

1
2
3
4

Wiki

0.5 1 2 4 8 16
0

0.5

1

2
3
4

th
ro

ug
hp

ut
on

SS
D

s
(G

ib
it/

s)

0.5 1 2 4 8 16
0

0.5

1
2
3
4

0.5 1 2 4 8 16
0

0.5

1
2
3
4

0.5 1 2 4 8 16
0

0.5

1
2
3
4

0.5 1 2 4 8 16
0

0.5

1

0.5 1 2 4 8 16
0

1

2

3

text size (GiB)

m
ai

n
m

em
or

y
pe

ak
(B

/
n

)

0.5 1 2 4 8 16
0

1

2

3

text size (GiB)
0.5 1 2 4 8 16

0

1

2

3

text size (GiB)
0.5 1 2 4 8 16

0

1

2

3

text size (GiB)

par.dd.pc.wm seq.pc.wm se.pc.wm
se.par.pc.wm se.ps.wm se.ps.ip.wm

Figure 3.17. Throughput and main memory peaks of the semi-external wavelet
matrix construction algorithms when using the HDDs (first row) and when using the
SSDs (second row). The parallel algorithms are using all 6 PEs. In the last row, we
give the main memory peak, which is independent of the used drive. Note that we
also measured running times for 6, 7, 14, and 15GiB, to show the algorithm’s behavior
close to maximum sized inputs that they can process on this hardware.

64

3.4 EXTERNAL MEMORY CONSTRUCTION

16 32 64 128
0

0.5

1

1.5

th
ro

ug
hp

ut
(G

ib
it/

s)

CommonCrawl

16 32 64 128
0

1

2

3

4
DNA

16 32
0

1

2

Prot

16 32 64 128
0

0.5

1

1.5

Wiki

16 32 64 128
1

1.5

2

input size n (GiB)

I/
O

s
(n/

220
)

16 32 64 128

0.2

0.4

0.6

input size n (GiB)
16 32

0.6

0.8

1

input size n (GiB)
16 32 64 128

1

1.5

2

input size n (GiB)

ext.dd (HDD) ext.dd (HDD, concr. R/W) ext.ps (HDD)
ext.dd (SSD) ext.dd (SSD, concr. R/W) ext.ps (SSD)
ext.dd I/Os read ext.dd I/Os write ext.ps I/Os read
ext.ps I/Os write hdd-max ssd-max

Figure 3.18. Throughput and I/Os of the external memory wavelet tree construction
algorithms in our strong scaling experiment. Here, our parallel external memory
algorithm ext.dd uses six processing elements.

65

CHAPTER 3 ENGINEERING WAVELET TREE CONSTRUCTION

16 32 64 128
0

0.5

1

1.5

th
ro

ug
hp

ut
(G

ib
it/

s)

CommonCrawl

16 32 64 128
0

1

2

3

4
DNA

16 32
0

1

2

Prot

16 32 64 128
0

0.5

1

1.5

Wiki

16 32 64 128
1

1.5

2

input size n (GiB)

I/
O

s
(n/

220
)

16 32 64 128

0.2

0.4

0.6

input size n (GiB)
16 32

0.6

0.8

1

input size n (GiB)
16 32 64 128

1

1.5

2

input size n (GiB)

ext.dd (HDD) ext.dd (HDD, concr. R/W) ext.ps (HDD)
ext.dd (SSD) ext.dd (HDD, concr. R/W) ext.ps (SSD)
ext.dd I/Os read ext.dd I/Os write ext.ps I/Os read
ext.ps I/Os write hdd-max ssd-max

Figure 3.19. Throughput and I/Os of the external memory wavelet matrix construc-
tion algorithms in our strong scaling experiment. Here, our parallel external memory
algorithm ext.dd uses six processing elements.

66

3.4 EXTERNAL MEMORY CONSTRUCTION

1 2 3 4 5 6

0.5

1

1.5

th
ro

ug
hp

ut
(G

ib
its

/
s)

CommonCrawl

1 2 3 4 5 6
0

1

2

3

4
DNA

1 2 3 4 5 6

0.5

1

1.5

2

Prot

1 2 3 4 5 6

0.5

1

1.5

Wiki

1 2 3 4 5 6

2.05

2.1

PEs p

I/
O

s
(n

/
220

)

1 2 3 4 5 6

0.6

0.8

1

1.2

PEsp
1 2 3 4 5 6

1.4

1.6

PEs p

1 2 3 4 5 6

2.04

2.06

2.08

PEs p

HDD HDD, concr. R/W I/Os read hdd-max
SSD SSD, concr. R/W I/Os write ssd-max

Figure 3.20. Throughput of ext.dd, our parallel wavelet tree construction algorithm,
for inputs of size 20GiB per PE in our weak scaling experiment.

Weak Scaling. We give the results of our weak scaling experiments in Figures 3.20
and 3.21, which are used to show that increasing the number of processing elements
increases the throughput of our algorithms—even if we also increase the input size.
Here, we only give the throughput (and I/Os) for the parallel external memory con-
struction algorithm ext.dd, because as shown in the strong scaling experiments it is
clearly superior, and ext.ps does not benefit from the access to additional processing
elements. Again, we also show the maximum throughput that ext.dd and ext.dd.wm
could achieve in both settings Ext.ssd and Ext.hdd. In this experiment, the results
for both wavelet tree and wavelet matrix construction are nearly identical. Hence, we
only describe results for wavelet tree construction.
We start with an analysis of the throughput. In both settings, the throughput

increases nearly linearly with the number of used processing elements. However, on
Ext.hdd, throughput does so only up to two (DNA), three (Prot), or four (CommonCrawl
and Wiki) processing elements. Using Ext.ssd, we achieve the linear increase up to
two (DNA), four (CommonCrawl), five (Prot), or six (Wiki) processing elements. Here, it
should be noted that the best speedup on Ext.ssd is achieved when we allow concurrent

67

CHAPTER 3 ENGINEERING WAVELET TREE CONSTRUCTION

1 2 3 4 5 6

0.5

1

1.5

th
ro

ug
hp

ut
(G

ib
its

/
s)

CommonCrawl

1 2 3 4 5 6
0

1

2

3

4
DNA

1 2 3 4 5 6

0.5

1

1.5

2

Prot

1 2 3 4 5 6

0.5

1

1.5

Wiki

1 2 3 4 5 6
2.04

2.06

2.08

2.1

2.12

PEs p

I/
O

s
(n

/
220

)

1 2 3 4 5 6

0.6

0.8

1

1.2

PEsp
1 2 3 4 5 6

1.4

1.6

PEs p

1 2 3 4 5 6

2.04

2.06

2.08

2.1

PEs p

HDD HDD, concr. R/W I/Os read hdd-max
SSD SSD, concr. R/W I/Os write ssd-max

Figure 3.21. Throughput of ext.dd.wm, our parallel wavelet matrix construction
algorithm, for inputs of size 20GiB per PE in our weak scaling experiment.

reads and writes. On Ext.hdd this is never beneficial, as it decreases the throughput
by around 7%. Even though the speedup is nearly linear, the best speedup we obtain
using six processing elements is on Ext.ssd using concurrent read and write operations
on Wiki. This results in a speedup of 3.23. Still, these results are very good, because for
large alphabets we achieve up to 81% of the maximal possible throughput (compared
to ssd-max) on SSDs and up to 89% for HDDs (compared to hdd-max).
Now, we look at the number of I/O operations. We always consider I/Os that are

normalized by the input size. First, we see that for DNA and Prot the number of I/Os
is nearly constant for any number of processing elements. On Prot, we see a slight
decrease when we use more than one processing element (by 0.2%). On CommonCrawl
and Wiki this decrease looks more severe, however it only drops by 1.65%. This is
due to the merging and writing partial wavelet trees to disk.

Overall, we see that ext.dd is the fastest external memory wavelet tree construction
algorithm that also runs in parallel and scales well. Our other algorithm ext.ps shows
that relying on sorting in external memory is too expensive when constructing a simple
structure like the wavelet tree or wavelet matrix.

68

3.5 HUFFMAN-SHAPED WAVELET TREES

3.5 HUFFMAN-SHAPED WAVELET TREES
In this section, we take a look at compressed wavelet trees and wavelet matrices. To
be more precise, we construct Huffman-shaped wavelet trees [Gro+03] and wavelet
matrices [Cla+15], i. e., we construct the wavelet tree or matrix not for the original text
but its Huffman encoded counterpart [Huf52]. Compared to the characters that we
use as input for a normal wavelet tree or wavelet matrix, not all Huffman codes have
the same length, hence not all bit vectors in a Huffman-shaped wavelet tree or wavelet
matrix have the same length; but there may be more levels as the some Huffman codes
may require more bits than the character it encodes. It is possible to balance the tree
to obtain O(lg σ) levels [NP13], which we do not consider in this section. Still, the total
length of all bit vectors of a Huffman-shaped wavelet tree or wavelet matrix is at most
as long as the total length of the corresponding normal wavelet tree or wavelet matrix.
To be more precise, it is shorter by the same ratio the Huffman encoded text is shorter
than the input text. The Huffman-shaped variants of the wavelet tree finds many
applications in practice, e. g., the paper originally describing the (Huffman-shaped)
wavelet tree as part of a compressed full-text indices [Gro+03], but also more recent
FM-indices [Gog+19] use Huffman-shaped wavelet trees. In general, Huffman-shaped
wavelet trees reduce the required space by increasing construction time.

In Section 3.5.1, we describe how to compute the Huffman codes such that they
can be used in wavelet trees and wavelet matrices. Then, in Section 3.5.2, we explain
how our algorithms described before—the sequential, shared memory parallel ones
for wavelet trees and wavelet matrices—can be adapted to compute Huffman-shaped
wavelet trees and matrices. Note that our semi-external and external memory wavelet
tree and wavelet matrix construction algorithms can be extended in the same fash-
ion. Last, in Section 3.5.3, we present practical results of the construction. Our
implementations are to the author’s best knowledge the first parallel Huffman-shaped
wavelet tree (and wavelet matrix) construction algorithms and also the only sequential
construction algorithms apart from the ones in SDSL [Gog+14a] or libcds [Cla+15].

3.5.1 Huffman Codes for Wavelet Trees and Wavelet Matrices
First, we briefly describe the construction of Huffman codes [Huf52] with a focus on
codes that can be used for wavelet trees and wavelet matrices. Now, let us take a look
how we can obtain Huffman codes for a text.

Computing Huffman Codes
Given a text T over an effective alphabet Σ and its histogram Hist. We describe the
construction algorithm for Huffman codes based on trees and forests (a set of disjoint
trees). Initially, there is a tree t{α} for each α ∈ Σ with weight w(tα) := Hist[α]. Now,
we merge two of the trees with the smallest weight, e. g., tA and tb, to a tree tA∪B
with weight w(tA∪B) = w(tA) + w(tB) by creating a new root with two children that
are tA and tB. We repeat this process until there is only one tree left, which is a
binary tree by definition. Remember that the leaves of this tree correspond to the

69

CHAPTER 3 ENGINEERING WAVELET TREE CONSTRUCTION

10

6

4

2

0 1

0

2 1

1

0

2

4 1

0

5 1

1

1

0

3 2

1

0

4

2

6 1

0

7 1

1

0

1 2

1

1

Figure 3.22. A Huffman tree for our running example T = [0, 1, 3, 7, 1, 5, 4, 2, 6, 3].
Each character is represented by a leaf. The light grey () node labels are the total
number of occurrences of all characters represented in the subtree. The Huffman code
of a character is the concatenation of all edge labels on the path from the root to the
character’s leaf.

symbols of the alphabet. If we implicitly label all edges going to a left child with a 0
and all other edges with a 1, then the Huffman code for each symbol is given by the
concatenation of the labels on its path from the root to its correspond leaf. We give
an example of a Huffman tree for our running example in Figure 3.22.
Before we look at the specific construction algorithms for the Huffman codes that

are required, let us briefly recall the problems that occur when using Huffman codes
for wavelet tree and wavelet matrix construction. As mentioned before, Huffman
codes are prefix free variable-length codes. Hence, all codes can have different lengths.
Regarding the structure of wavelet trees and wavelet matrices, this can lead to the
problem of disappearing intervals, where disappearing intervals are intervals that
would represent Huffman codes with bit prefix of length ` that do not occur, whereas
Huffman codes with bit prefix bit_prefix(`− 1, bp) exist. For example, if there is a
Huffman code c = (01)2, then there is no character represented by any interval with
bit prefix c at level ` with ` ≥ 3, because Huffman codes are prefix free by definition.

In level-wise wavelet trees and wavelet matrices, disappearing intervals can be prob-
lematic when we answer queries, because disappearing intervals change the expected
positions of intervals on all levels below and including the one they disappear in. To
avoid this problem, all disappearing intervals should occur on the right-hand side
of the bit vector they disappear in. Then, no other intervals are affected by their
disappearance. This also simplifies queries, as we can easily determine if we have
found a code word simply by looking at the length of the bit vector. If we require
a bit that is not contained in the bit vector, because its position is greater than the
length of the bit vector, then we have identified a code word. To this end, we have to
compute the codes slightly different for the wavelet tree and the wavelet matrix, as
the order of the intervals at each level differs for both.

70

3.5 HUFFMAN-SHAPED WAVELET TREES

Huffman Codes for Wavelet Trees
When computing Huffman codes that are useful for wavelet trees, the disappearing
intervals must represent the largest symbols—codes in this case—as the intervals at
each level of the wavelet tree are ordered ascending. Therefore, for Huffman-shaped
wavelet trees, we use the canonical Huffman code, a variant of Huffman code that
assigns codes of equal length consecutive and most importantly ascending values. The
(canonical) Huffman codes for our running example T = [0, 1, 3, 7, 1, 5, 4, 2, 6, 3] are
depicted in Figure 3.23.
To obtain the canonical Huffman, we first compute the (normal) Huffman codes

for our text. Then, we order these codes by length. Finally, we start with the code
word chc = (0`)2, where ` is the length of our shortest code word. Now, chc is the
first canonical code word. We increase chc by one and append `′ − ` zeros to its right,
where `′ is the length of the next code word. In practice, we can append zeros by
shifting c by that many bits, which makes the transformation very easy to compute.
Then, chc is the next canonical code word and we repeat the process until no more
code are left to be transformed to canonical code words. Now, we have canonical
Huffman codes. However, we need to bitwise negate all code words obtained this way.
Otherwise disappearing intervals would occur on the left-hand side of the bit vectors,
as short code words correspond to small numbers (if interpreted as integer).

Huffman Codes for Wavelet Matrices
As described in Section 2.3, wavelet matrices do not have the tree structure and
the intervals get intermingled with respect to their bit prefixes. Therefore, canonical
Huffman codes do not result in disappearing intervals on the right-hand side of the bit
vectors. Instead, we use the Huffman-like codes proposed by Claude et al. [Cla+15]
that are also optimal prefix free codes. We give an example of Huffman-like codes for
our running example in Figure 3.24.
Computing the Huffman-like codes is similar to computing the canonical Huffman

codes. First, we compute the lengths of all Huffman codes (by computing the Huffman
codes). Then, we start with the set C = {(0)2, (1)2} and for each code of length
one, we use hlc = argmaxc∈C reverse(c) as code word and remove c from C. Note
that there are either only two codes in total, or at most one code with length one.
In the next step, we append (0)2 and (1)2 to all elements in C, which doubles the
number of elements remaining in C. We then repeat this process for all codes with
length two. Afterwards, we again append (0)2 and (1)2 to all elements in C. We
repeat this process until we have computed all code words. Now, the text is encoded
by codes that have the same length as the Huffman codes. We choose the elements
mimicking the bit reversal permutation, resulting in disappearing intervals only on
the right-hand side of the bit vectors.

71

CHAPTER 3 ENGINEERING WAVELET TREE CONSTRUCTION

α hc(α) chc(α)

1 (11)2 (11)2

3 (01)2 (10)2

6 (100)2 (011)2

7 (101)2 (010)2

0 (0000)2 (0011)2

2 (0001)2 (0010)2

4 (0010)2 (0001)2

5 (0011)2 (0000)2

(a) Huffman codes (hc) given
by the Huffman tree depicted
in Figure 3.22 and the result-
ing bitwise negated canonical
Huffman codes (chc).

10

6

4

2

5 1

0

4 1

1

0

2

2 1

0

0 1

1

1

0

2

7 1

0

6 1

1

1

0

4

3 2

0

1 2

1

1

(b) Modified Huffman tree corresponding to
the bitwise negated canonical Huffman codes
in (a).

0 1 3 7 1 5 4 2 6 3

0 1 1 0 1 0 0 0 0 1
0 7 5 4 2 6 1 3 1 3

0 1 0 0 0 1 1 0 1 0
0 5 4 2 7 6

1 0 0 1 0 1
5 4 0 2

0 1 1 0
(c) Huffman-shaped wavelet tree using the bitwise
negated canonical Huffman codes given in (a).

Figure 3.23. Huffman codes corresponding to the Huffman tree in Figure 3.22 and the
resulting bitwise negated canonical Huffman codes (a), the modified Huffman tree for
the bitwise negated canonical Huffman codes (b), and the resulting Huffman-shaped
wavelet tree (c). All for our running example T = [0, 1, 3, 7, 1, 5, 4, 2, 6, 3]. As with
our previous examples, the dark red () parts show the characters represented at the
corresponding position in the array and is not part of the wavelet tree.

72

3.5 HUFFMAN-SHAPED WAVELET TREES

3.5.2 Huffman-shaped Wavelet Tree Construction Algorithms
Using the canonical Huffman codes for wavelet trees and the Huffman-like codes for
wavelet matrices, we can adapt our algorithms that we described in the previous
sections to compute Huffman-shaped wavelet trees and wavelet matrices. Similar to
previous sections, we focus on wavelet tree construction, but all algorithms are also
extended to also compute the wavelet matrix.
Due to the structure of Huffman-shaped wavelet trees and wavelet matrices, we

cannot use the bottop-up construction technique, which we described in Section 3.1,
because we cannot compute the histogram of level ` based on the histogram of level
`+ 1, as upper levels in the histogram can contain more bits than the histogram of
level `. That is because not all code words have the same length, and some code words
are represented by an interval at level ` but not by an interval at level `+ 1.
Instead, we compute the wavelet trees and matrices top-down. We compute all

histograms during the first scan of the text, which requires moderately additional
space but decreases the running time significantly in practice. Also, we reduce the
text, i. e., whenever we scan through the text at level `, we remove characters whose
code word has length `, as those characters are not represented by any interval at level
`+ 1. Except for the computation of the histograms we can reuse all algorithms that
we have described in this chapter. The computation of the histograms differs because
now there are characters that do not occur on all levels. While we can compute the
characters that disappear at each level, it is not practical, as this requires a check of
each symbol not occurring in the previous level if it appears in the current one. These
checks require more time than to simply recompute the histogram. Therefore, we only
briefly describe the algorithms that we have implemented.

Sequential Construction Algorithms. For the sequential wavelet tree and wavelet
matrix construction we do not have to change anything else (except for the histogram
computation). Hence, we reuse the techniques of prefix counting (Section 3.2.1) and
sorting (Section 3.2.1) for their construction. Apart from the top-down constructions,
which in practice results in an additional scan of the text per level, the algorithms
remain the same. We denote the resulting algorithms by seq.pc.huff, seq.pc.ss.huff, and
seq.ps.huff, i. e., we append the suffix .huff to denote the algorithms for the Huffman-
shaped wavelet tree construction algorithms. Their wavelet-matrix-constructing coun-
terparts are denoted by the .wm suffix. We evaluate the sequential construction
algorithms in Section 3.5.3.

Parallel Construction Algorithms. Now, we describe how we parallelize the Huffman-
shaped wavelet tree and wavelet matrix construction. Based on the running time of our
parallel normal-shaped wavelet tree construction that we have examined extensively
in Section 3.3, we focus on the fastest approach to parallelize wavelet tree and wavelet
matrix construction, domain decomposition, and apply it to Huffman-shaped wavelet
trees and wavelet matrices. We refer to Section 3.3.3 for a detailed description of
wavelet tree construction using domain decomposition.

73

CHAPTER 3 ENGINEERING WAVELET TREE CONSTRUCTION

α hlc(α)

1 (01)2

3 (11)2

6 (001)2

7 (101)2

0 (0000)2

2 (0001)2

4 (1000)2

5 (1001)2

(a) Huffman-like codes that have
the same length as Huffman
codes.

0 1 3 7 1 5 4 2 6 3

0 0 1 1 0 1 1 0 0 1
0 1 1 2 6 3 7 5 4 3

0 1 1 0 0 1 0 0 0 1
0 2 6 7 5 4

0 0 1 1 0 0
0 2 5 4

0 1 0 1
(b) Huffman-shaped wavelet matrix using the
Huffman-like codes given in (a).

Figure 3.24. Huffman-like codes [Cla+15] that have the same length as Huffman codes
but are constructed differently (a) and the corresponding Huffman-shaped wavelet
matrix (b) for the text T = [0, 1, 3, 7, 1, 5, 4, 2, 6, 3]. As with our previous examples,
the dark red () parts show the characters represented at the corresponding position
in the array and is not part of the wavelet matrix.

Briefly, we compute partial wavelet trees (or wavelet matrices) for a slice of the
text in parallel and merge those in parallel. As a result of this, we can use any
sequential Huffman-shaped wavelet tree (or wavelet matrix) construction algorithms
and parallelize it using this approach, however, we have to use global Huffman codes,
i. e., Huffman codes for the whole text. Otherwise, merging is not possible, because
the same character could be encoded differently on different processing elements. We
only need a parallel merge for the partial Huffman-shaped wavelet trees (and wavelet
matrices). The merge however is similar to the one for normal-shaped wavelet trees
and wavelet matrices we describe in Section 3.3.3. The only difference is that we have
to consider disappearing intervals.

Using domain decomposition, we can use all our sequential Huffman-shaped wavelet
tree (and wavelet matrix) construction algorithms described above and use the in
our parallel domain decomposition. This results in the following parallel construction
algorithms, where we follow the naming scheme from the previous sections: par.pc.huff,
par.pc.ss.huff, par.ps.huff, par.dd.pc.huff, par.dd.pc.ss.huff, and par.dd.ps.huff. Again,
the corresponding Huffman-shaped wavelet matrix construction algorithms are denoted
by the .wm suffix.
It should be noted that we do not compute the Huffman codes in parallel. To be

precise, we compute the histograms in parallel, but the computation of the codes
based on the number of occurrences is sequential. This is because computing the
Huffman codes is fast compared to the computation of the histograms

74

3.5 HUFFMAN-SHAPED WAVELET TREES

3.5.3 Experimental Evaluation
We implemented all our Huffman-shaped wavelet tree and wavelet matrix construc-
tion algorithms that we described in the previous section. Our implementations are
available at www.kurpicz.org/wavelet.

For our experiments we used the hardware described in Section 1.4.1 and conducted
the experiments on LiDO.big nodes. We used (prefixes of) the texts described in
Section 1.4.2 as inputs. Since we want to compare the results of the experiments with
our experiments on the sequential (Section 3.2) and parallel (Section 3.3) wavelet tree
and wavelet matrix construction we compiled our code with GCC 7.3.0 with flags -O3
and -march=native. We justify the usage of an older compiler version in Section 3.3.

Evaluation of Sequential Algorithms
We compare our Huffman-shaped wavelet tree and wavelet matrix construction al-
gorithm with the only other publicly available implementation that are aware of
seq.sdsl.huff, which is part of the SDSL [Gog+14a]. To the author’s best knowledge,
there are no other implementations of Huffman-shaped wavelet tree and wavelet matrix
construction algorithms publicly available.
Since we must compute the Huffman codes for the input, we first load the text

into main memory, compute the effective alphabet, and then start the timing, before
computing the Huffman codes for the input. Again, we stop the timing as soon as
the Huffman-shaped wavelet tree or wavelet matrix has been computed. As in all
previous experiments, measured running times are the median of five executions of
the construction algorithm. The maximum time for these five executions and an
additional computation that we use to compute the memory usage is two hours.
Similar to all previous experimental evaluations of wavelet tree and wavelet ma-

trix construction algorithms, we focus on the results of the results of the Huffman-
shaped wavelet tree construction algorithms, as the results for their wavelet-matrix-
constructing counterparts are nearly identical. Since Huffman-shaped wavelet trees
and wavelet matrices require different Huffman codes, this means that the construction
of those requires the same amount of time in practice. Also, by design, the compres-
sion that is achieved by using either construction is the same, i. e., the resulting
Huffman-shaped wavelet trees and wavelet matrices have the same size.

Construction Time. We first look at the construction times. In Figure 3.25, we give
the throughput of our algorithms that has been normalized by the input size. (The
throughput for the wavelet matrix construction algorithms are depicted in Figure 3.27.)
In general, we obtain half the throughput we get when we construct the normal-shaped
wavelet tree, compare Section 3.2.4. The reason for this is threefold: (1) we have to
compute the corresponding Huffman codes, (2) we have to map each character to its
Huffman code whenever we access it, as we cannot practically overwrite the input
text with Huffman codes, and (3) the computation is slower as we cannot use our
bottom-up approach for reasons we described in Section 3.5.2.

75

www.kurpicz.org/wavelet

CHAPTER 3 ENGINEERING WAVELET TREE CONSTRUCTION

Now, we take a more detailed look at the throughput of the construction algorithms.
First, we see that the naive algorithm seq.naive.huff did not finish the experiments
for inputs larger than 1GiB within two hours (which is the time limit for all our
experiments in this part of the dissertation). This is because text access becomes more
expensive if we have to encode each character whenever we access it, which is necessary
as we do not store the encoded text. Storing the encoded text is not beneficial if we use
more sophisticated algorithms. Due to its low throughput, we discard seq.naive.huff
in the further discussion of Huffman-shaped wavelet tree construction algorithms.
Unlike before, there is not one clear fastest or slowest algorithm. The Huffman-

shaped wavelet tree construction algorithm seq.sdsl.huff and seq.ps.huff are the two
slowest algorithms with seq.ps.huff being slower on CommonCrawl and Wiki, and
seq.sdsl.huff being slower on DNA. Both algorithms have nearly the same through-
put on Prot. The difference in throughput is at most 25Mibits/s.
The fastest two algorithms are seq.pc.huff and seq.pc.ss.huff. The former is the

fastest on DNA and Prot and the latter on CommonCrawl. On Wiki both algorithms
have a similar throughput with seq.pc.ss.huff becoming faster for larger (at least 4GiB)
inputs. Notably, seq.pc.huff is faster on inputs with smaller alphabet. This is due
to the fact that seq.pc.ss.huff only encodes each character once to compute all levels.
Encoding a character with its corresponding Huffman code is the bottleneck in this
algorithm, which is why we only see this effect for large alphabets. Hence, for Huffman-
shaped wavelet trees, the fastest algorithm depends on the input. This shows that
the input is of greater importance here, as different Huffman codes result in different
sizes of the levels, see Section 1.4.2 for the empirical entropy H0 of the used inputs.

28 30 32 34

50

100

150

200

input size lg n (B)

th
ro

ug
hp

ut
(M

ib
it/

s)

CommonCrawl

28 30 32 34

50

100

150

200

input size lg n (B)

DNA

28 30 32 34

50

100

150

200

input size lg n (B)

Prot

28 30 32 34

50

100

150

200

250

input size lg n (B)

Wiki

seq.naive.huff seq.pc.ss.huff seq.sdsl
seq.pc.huff seq.ps.huff

Figure 3.25. Throughput of the sequential Huffman-shaped wavelet tree construction
algorithms.

76

3.5 HUFFMAN-SHAPED WAVELET TREES

1.78

2.78

3.78

4.72
5

5.53

m
em

or
y

pe
ak

(B
/
n

)

CommonCrawl

1.25

2.25

3.25

4.755

DNA

1.53

2.53

3.53

5
5.28

Prot

1.67

2.67

3.67

55.17

Wiki

seq.naive.huff seq.pc.huff seq.pc.ss.huff seq.ps.huff
seq.sdsl 1 + dlg σe/8 1 + |WThuff |

Figure 3.26. Memory peaks of wavelet tree construction algorithms for n = 231.
Also depicted is the memory required the text and the normal-shaped wavelet tree
(1 + dlg σe/8 bytes per character), the text and the Huffman-shaped wavelet tree
(1 + |WThuff |).

28 30 32 34

50

100

150

200

input size lg n (B)

th
ro

ug
hp

ut
(M

ib
it/

s)

CommonCrawl

28 30 32 34

50

100

150

200

input size lg n (B)

DNA

28 30 32 34

50

100

150

200

input size lg n (B)

Prot

28 30 32 34

50

100

150

200

input size lg n (B)

Wiki

seq.naive.huff.wm seq.pc.ss.huff.wm
seq.pc.huff.wm seq.ps.huff.wm

Figure 3.27. Throughput of the sequential Huffman-shaped wavelet matrix construc-
tion algorithms.

77

CHAPTER 3 ENGINEERING WAVELET TREE CONSTRUCTION

1.84

3.84

4.84

m
em

or
y

pe
ak

(B
/
n

)

CommonCrawl

1.25

2.25

3.25

4.75

DNA

1.53

3.53

4.53

Prot

2.67

3.67

4.67

5.67

Wiki

seq.naive.huff.wm seq.pc.huff.wm seq.pc.ss.huff.wm
seq.ps.huff.wm 1 + dlg σe/8 1 + |WMhuff |

Figure 3.28. Snapshot of the memory peaks of sequential waveletmatrix construction
algorithms for n = 231. Also depicted is the memory required the text and the
normal-shaped wavelet matrix (1 + dlg σe/8 bytes per character), the text and the
Huffman-shaped wavelet matrix (1 + |WThuff |).

Memory Peak. In Figure 3.26, we report the memory peaks of the Huffman-shaped
wavelet tree construction algorithms for inputs of size 2GiB, which is the largest input
size that all algorithms could process in the time limit of our experimental setting.
(The corresponding results for the Huffman-shaped wavelet matrix construction are
depicted in Figure 3.28.) In addition to the size of the Huffman-shaped wavelet tree,
we also give the size of the normal-shaped wavelet tree.

We see that our naive construction algorithm seq.naive.huff requires the most mem-
ory on all inputs but DNA, i. e., at least 4.75 bytes per character of the input. Thus,
the naive algorithm is not only the slowest but also the most memory inefficient one.
Next, seq.sdsl.huff requires 5 bytes per character of input on all inputs, which is

the same as the normal-shaped wavelet tree construction algorithm contained in the
SDSL, as we have shown in Figure 3.4. Also, on DNA it requires even more memory
than seq.naive.huff, making it unpractical compared to our other algorithms.

When looking at the results for our fast algorithms, the biggest difference between
our Huffman-shaped and normal-shaped wavelet tree construction algorithms is that
seq.pc.huff requires more memory than seq.pc.ss.huff. This is because we overwrite the
text in seq.pc.huff, which helps ignore characters that are already been fully contained
in the Huffman-shaped wavelet tree, i. e., their code length is smaller than the current
level. Since all our algorithms are not allowed to change the input text, we need to
copy it. If we allow seq.pc.huff to overwrite the input, then it has the same memory
peak as seq.pc.ss.huff.

78

3.5 HUFFMAN-SHAPED WAVELET TREES

Evaluation of Parallel Algorithms
Since there are no other parallel Huffman-shaped wavelet tree or wavelet matrix
construction algorithms, we only present the results for our algorithms. We conducted
a weak scaling experiment where we constructed the wavelet tree for 128MiB, 256MiB,
and 512MiB per processing element and 1, 2, 4, 8, 16, 32, or 48 processing elements.
Other than that, the setting is exactly the same as for the sequential Huffman-shaped
wavelet tree construction algorithms. Again, we only interpret the results for the
wavelet tree construction, as the results for wavelet matrices are very similar.

Construction Time. We give the throughput of the Huffman-shaped wavelet tree
construction algorithms in our weak scaling experiment in Figure 3.29. (In Figure 3.30,
we give the throughput for the wavelet matrix construction.)

Using the naive algorithm par.dd.naive.huff in the domain decomposition results,
as expected, is the slowest parallel Huffman-shaped wavelet tree construction algo-
rithms. While being slow, it scales reasonably well, as expected when using domain
decomposition to parallelize the construction. Next, par.dd.ps.huff.wm is the second
slowest algorithm on all inputs but Wiki. Because of its sequential performance this
is without surprise.

Finally, par.dd.pc.ss.huff and par.dd.pc.ss.huff are the two fastest parallel Huffman-
shaped wavelet tree construction algorithm. However, we need to look at all texts
individually, as the algorithms behave differently (as in the sequential case) depending
on the input. On CommonCrawl, both par.dd.pc.ss.huff is slightly faster (0.01Gibits/s)
on one processing element and is 1.07Gibits/s faster on 48 processing elements.
When looking at our inputs with small alphabets, the situation is different. On

DNA, par.dd.pc.huff is faster than par.dd.pc.ss.huff when using less than 16 processing
elements. Using 16 processing elements, the algorithms are of similar speed. When we
use more than 16 processing elements, par.dd.pc.ss.huff is faster than par.dd.pc.ss.huff.
This is also the same on Prot, however, the difference in throughput is smaller. Finally,
on Wiki, par.dd.pc.ss.huff is the fastest algorithm.
We give the throughput of all algorithms on one and on 48 processing elements

in Table 3.2. There, we also report the speedup of all algorithms. It is interesting
that the speedup of our Huffman-shaped wavelet tree construction algorithms on 48
processing elements is higher than the one of our normal wavelet tree construction
algorithms. This is because the computation is not compute bound but limited by
the bandwidth of the main memory. This limitation is not as strong when we have
to encode the characters. Summarizing, par.dd.pc.ss.huff has the highest speedups on
all inputs expect for Wiki where par.dd.pc.ss.huff has the highest speedup.

The COST (Section 1.3.3) of the parallelization is two, as our parallel algorithms are
as fast as the fastest sequential Huffman-shaped wavelet tree construction algorithm
when using only one processing element but faster if two or more processing elements
are used. Therefore, our parallel algorithms do not only scale well because they are
slow when executed as sequential algorithm.

79

CHAPTER 3 ENGINEERING WAVELET TREE CONSTRUCTION

1 2 4 8 16 32 48

0.1

1

10

Co
mm

on
Cr

aw
l

th
ro

ug
hp

ut
(G

ib
it/

s)
128 MiB per PE

1 2 4 8 16 32 48

0.1

1

10
256 MiB per PE

1 2 4 8 16 32 48

0.1

1

10
512 MiB per PE

1 2 4 8 16 32 48

0.1

1

DN
A

th
ro

ug
hp

ut
(G

ib
it/

s)

1 2 4 8 16 32 48

0.1

1

1 2 4 8 16 32 48

0.1

1

1 2 4 8 16 32 48

0.1

1

10

Pr
ot

th
ro

ug
hp

ut
(G

ib
it/

s)

1 2 4 8 16 32 48

0.1

1

10

1 2 4 8 16 32 48

0.1

1

10

1 2 4 8 16 32 48

0.1

1

10

PEs p

Wi
ki

th
ro

ug
hp

ut
(G

ib
it/

s)

1 2 4 8 16 32 48

0.1

1

10

PEs p

1 2 4 8 16 32 48

0.1

1

10

PEs p

par.dd.naive.huff par.dd.pc.huff par.dd.pc.ss.huff par.dd.ps.huff

Figure 3.29. Weak scaling Huffman-shaped wavelet tree construction experiments.

80

3.5 HUFFMAN-SHAPED WAVELET TREES

1 2 4 8 16 32 48

0.1

1

10

Co
mm

on
Cr

aw
l

th
ro

ug
hp

ut
(G

ib
it/

s)
128 MiB per PE

1 2 4 8 16 32 48

0.1

1

10
256 MiB per PE

1 2 4 8 16 32 48

0.1

1

10
512 MiB per PE

1 2 4 8 16 32 48

0.1

1

DN
A

th
ro

ug
hp

ut
(G

ib
it/

s)

1 2 4 8 16 32 48

0.1

1

1 2 4 8 16 32 48

0.1

1

1 2 4 8 16 32 48

0.1

1

10

Pr
ot

th
ro

ug
hp

ut
(G

ib
it/

s)

1 2 4 8 16 32 48

0.1

1

10

1 2 4 8 16 32 48

0.1

1

10

1 2 4 8 16 32 48

0.1

1

PEs p

Wi
ki

th
ro

ug
hp

ut
(G

ib
it/

s)

1 2 4 8 16 32 48

0.1

1

PEs p

1 2 4 8 16 32 48

0.1

1

PEs p

par.dd.naive.huff.wm par.dd.pc.huff.wm par.dd.pc.ss.huff.wm par.dd.ps.huff.wm

Figure 3.30. Weak scaling Huffman-shaped waveletmatrix construction experiments.

81

CHAPTER 3 ENGINEERING WAVELET TREE CONSTRUCTION

Ta
bl
e
3.
2.

T
hr
ou

gh
pu

t
(G

ib
its

/s
)
of

th
e
H
uff

m
an

-s
ha

pe
d
wa

ve
le
t
tr
ee

an
d
wa

ve
le
t
m
at
rix

co
ns
tr
uc

tio
n
al
go

rit
hm

s
in

ou
r
we

ak
sc
al
in
g
ex
pe

rim
en
t
w
he
n
us
in
g
on

e
(t

1)
or

48
(t

48
)
PE

s
an

d
51

2M
iB

in
pu

t
pe

r
PE

.
M
iss

in
g
va
lu
es

m
ea
n
th
at

th
e
al
go

rit
hm

co
ul
d
no

t
co
m
pu

te
th
e
H
uff

m
an

-s
ha

pe
d
wa

ve
le
t
tr
ee

fo
r
th
e
in
pu

t.
W
e
m
ar
k
th
e
hi
gh

es
t
th
ro
ug

hp
ut

an
d

sp
ee
du

p
fo
r
ea
ch

in
pu

t
in

bo
ld
. Co

mm
on

Cr
aw

l
DN

A
Pr

ot
Wi

ki

t 1
t 4

8
t 4

8/
t 1

t 1
t 4

8
t 4

8/
t 1

t 1
t 4

8
t 4

8/
t 1

t 1
t 4

8
t 4

8/
t 1

pa
r.d

d.
na

iv
e.
hu

ff
0.
04

0.
94

23
.5
9

0.
03

0.
86

30
.0
2

0.
04

0.
94

26
.3
1

pa
r.d

d.
pc

.h
uff

0.
19

6.
16

32
.4
0

0.
20

4.
23

21
.5
4

0.
20

5.
76

29
.0
1

0.
21

6.
91

32
.1
8

pa
r.d

d.
pc

.ss
.h
uff

0.
20

7.
23

36
.0
1

0.
14

5.
07

35
.1
0

0.
18

6.
41

34
.8
5

0.
21

5.
67

26
.5
2

pa
r.d

d.
ps
.h
uff

0.
14

4.
47

31
.8
4

0.
12

2.
53

21
.8
0

0.
13

3.
71

29
.3
9

0.
15

4.
83

31
.6
2

pa
r.d

d.
na

iv
e.
hu

ff.
w
m

0.
04

1.
09

29
.2
6

0.
03

0.
85

31
.9
7

0.
03

1.
01

30
.6
0

0.
04

1.
21

29
.6
3

pa
r.d

d.
pc

.h
uff

.w
m

0.
17

5.
75

33
.5
3

0.
20

4.
31

22
.0
4

0.
20

5.
68

28
.8
4

0.
20

5.
83

29
.2
0

pa
r.d

d.
pc

.ss
.h
uff

.w
m

0.
19

6.
81

36
.7
5

0.
14

5.
01

34
.7
0

0.
19

6.
43

34
.7
1

0.
20

4.
87

23
.9
6

pa
r.d

d.
ps
.h
uff

.w
m

0.
13

4.
31

32
.7
3

0.
12

2.
52

21
.5
6

0.
13

3.
69

29
.0
1

0.
15

4.
32

29
.2
3

82

3.6 CONCLUSION AND FUTURE WORK

2

3

m
em

or
y

pe
ak

(B
/
n

)

CommonCrawl

1.25
1.5

2.25

DNA

1.63
2.25
2.63

Prot

2

3

Wiki

par.dd.naive.huff par.dd.pc.huff par.dd.pc.ss.huff
par.dd.ps.huff 1 + dlg σe/8 1 + |WThuff |

Figure 3.31. Memory peaks of the parallel wavelet tree construction algorithms using
48 PEs and 256MiB input per PE. We show this for the small inputs to have the
same setting as for the parallel wavelet tree construction algorithms in Figure 3.12a.
The memory required just for the input text and the wavelet tree (1+ ddlg σe/8e bytes
per character) is also shown.

Memory Peak. We give the memory peak of our parallel Huffman-shaped wavelet
tree construction algorithms in Figure 3.31. (The results for the corresponding wavelet
matrix construction are shown in Figure 3.32.) On all inputs par.dd.pc.ss.huff is the
most memory efficient algorithm. Next is par.dd.pc.huff. The reason is the same
as in the sequential case, which we discussed in detail before. The other algorithms,
par.dd.naive.huff and par.dd.ps.huff also have the expected memory requirements.
All in all, this makes par.dd.pc.ss.huff the fastest (depending on the input) and

most memory efficient parallel Huffman-shaped wavelet tree construction algorithm
and par.dd.pc.huff, too, fastest (depending on the input) but not that memory efficient
construction algorithm.

3.6 CONCLUSION AND FUTURE WORK
We presented a novel approach wavelet tree and wavelet matrix construction—the
bottom-up construction. Here, we make great use of the structure of wavelet trees and
the dependencies on the histogram of the text. Due to their similarity, we can also
extend all wavelet tree construction algorithms to work for the wavelet matrix, too.
Our sequential wavelet tree and wavelet matrix construction algorithms that are

based on this approach are the fastest and most memory efficient construction algo-
rithms to date. More precisely, one of our algorithms seq.pc (and its variant seq.pc.ss)
is the fastest and most memory efficient one.
Next, we parallelized our algorithms. To this end, we not only created parallel

versions of our algorithms but also used domain decomposition, a meta-approach that
can work with any sequential wavelet tree and wavelet matrix algorithm. Using our fast

83

CHAPTER 3 ENGINEERING WAVELET TREE CONSTRUCTION

2

3

m
em

or
y

pe
ak

(B
/
n

)

CommonCrawl

1.25
1.5

2.25

DNA

1.63
2.25
2.63

Prot

2

3

Wiki

par.dd.naive.huff.wm par.dd.pc.huff.wm par.dd.pc.ss.huff.wm
par.dd.ps.huff.wm 1 + dlg σe/8 1 + |WThuff |

Figure 3.32. Memory peaks of the parallel wavelet matrix construction algorithms
using 48 PEs and 256MiB input per PE. We show this for the small inputs to have the
same setting as for the parallel wavelet tree construction algorithms in Figure 3.12b.
The memory required just for the input text and the wavelet tree (1+ ddlg σe/8e bytes
per character) is also shown.

sequential construction algorithms in combination with a highly engineered parallel
merge, we obtained the fastest and again most memory efficient parallel wavelet tree
and wavelet matrix construction algorithm. Again, one of our presented algorithms
is both: the fastest and the most memory efficient one. It should also be noted that
those wavelet matrix construction algorithms are also the first parallel ones that have
been implemented.
Then, we presented semi-external and external memory wavelet tree and wavelet

matrix construction algorithms that allow us to overcome the limitations regarding
the input size, which is given by the size of the main memory (for our sequential
and parallel construction algorithms). The parallelization of the external memory
construction algorithms scales well and requires nearly no RAM for the computation.

Additionally, our theoretical result shows the similarity of wavelet trees and wavelet
matrices by providing a compact data structure that allows each wavelet tree con-
struction algorithm to compute the wavelet matrix instead in the same asymptotic
running time (in Section 2.4). The other direction has also been shown (with slightly
worse space requirements) [Din19].

Future Work. Recently, the sequential wavelet tree and wavelet matrix construction
algorithm with the best asymptotic running time [Bab+15; Mun+16] has been im-
plemented by Kaneta [Kan18]. Unfortunately, this implementation is not publicly
available, thus implementing the algorithms presented by Kaneta would be of great
importance to verify the reported results. Dinklage et al. [Din+20] presented dis-
tributed memory parallel wavelet tree and wavelet matrix construction algorithm that

84

3.6 CONCLUSION AND FUTURE WORK

are not limited by the hardware limitations of a single machine, which our algorithms
are. A hybrid of these two concepts could provide the best of these two worlds, as
our shared memory parallel algorithms are faster than the distributed memory par-
allel construction algorithms. There, the fastest distributed memory wavelet tree
construction algorithm requires 3 (CommonCrawl and Wiki) and 4 (DNA) LiDO.small
nodes (60 processing elements in total) to achieve the same throughput as our fastest
shared memory construction algorithm using one LiDO.small node with 20 processing
elements [Din+20, Figure 12]. Since all this work only considers the construction of
wavelet trees and wavelet matrices, it remains open how to efficiently answer queries
in practice in parallel (shared and distributed memory).

85

Part II

Distributed Memory Text Index
Construction

87

CHAPTER 4
AN EXCURSION TO

SUFFIX SORTING
IN MAIN MEMORY

Independently presented by Manber and Myers [MM93] and Gonnet et al. [Gon+92],
the suffix array (SA) of a text T of length n is a permutation of [0,n) such that

T [SA[i]..n) < T [SA[j]..n), for i < j ∈ [0, n).

In other words, the suffix array of the text T contains the starting positions of the
lexicographically sorted suffixes of T . The inverse suffix array, denoted by SA−1, is

0 1 2 3 4 5
c d c d e $
5 0 2 1 3 4
0 0 2 0 1 0

T

SA
LCP

$ c c d d e
d d c e $
c e d $
d $ e
e $
$

Figure 4.1. Suffix and LCP array
for T = [c, d, c, d, e, $]. We high-
light the LCPs in green ().

the inverse permutation of the suffix array, i. e.,
SA−1[SA[i]] = i for all i ∈ [0, n).

From now on, we assume that the last character
of the text is a sentinel (denoted by $) that is
unique in the text and lexicographically smaller
than all other characters. This gives us some
convenient properties, e. g., SA[0] = n − 1, but
most importantly that no propper suffix is the
prefix of another suffix. In addition, is easy to
realize in practice.
The suffix array is often accompanied by the

longest common prefix (LCP) array, see Figure 4.1.
The LCP array contains the length of the longest
common prefixes of two lexicographically consec-
utive suffixes. To be precise LCP[0] = 0 and for all other i ∈ [1, n) we have

LCP[i] = max{s ≥ 0: T [SA[i]..SA[i] + s) = T [SA[i− 1]..SA[i− 1] + s)}.

We denote the LCP value of any two suffixes starting at text positions i, j ∈ [1, n)
by lcp(i, j) = max{s ≥ 0: T [i..i+ s) = T [j..j + s)}. Using the LCP array and the
inverse suffix array, we can compute LCP values as lcp(i, j) = min{LCP[k] : SA−1[i] <
k ≤ SA−1[j]}. Range minimum queries (RMQs) retrieve the minimum of an interval
in a static array in constant time, requiring O(n) preprocessing time, e. g., [FH11].

89

CHAPTER 4 AN EXCURSION TO SUFFIX SORTING IN MAIN MEMORY

Part II of this dissertation is based on three publications. This chapter is based on
our work on the DivSufSort [FK17], which is the fastest main memory suffix array
construction algorithm in practice on most inputs, see also Section 4.1. Here, we also
motivate work on suffix array construction. Chapter 5 is based on two publications.
First, we presented a multitude of distributed suffix array construction algorithms
implemented in the distributed big data batch computation framework Thrill [Bin+18].
Then, we extended DivSufSort to also work in distributed memory [FK19], resulting
in a lightweight and still competitively fast distributed algorithm.
While the focus of this part lies on distributed memory suffix array construction,

we first introduce algorithms working in main memory. The reasons are threefold:
(1.) The majority of existing work on suffix sorting has been conducted focusing on
the main memory, (2.) the motivation for suffix sorting is independent of the model
of computation, and (3.) some are the basis for our distributed algorithms, most
notably DivSufSort [FK19]. So we have a brief look at different construction strategies
in Section 4.1, describe the fastest algorithm—DivSufSort—in detail in Section 4.2,
extend this algorithm to also compute the LCP array in Section 4.3, and finally
comparing it with other suffix and LCP array construction algorithms in Section 4.4.

4.1 SUFFIX ARRAY CONSTRUCTION ALGORITHMS
Suffix arrays belong to the most well researched text data structures. Since their
introduction, (to the author’s best knowledge) 24 different main memory suffix array
construction algorithms have been presented. All of these suffix sorting algorithms
belong to one type or are a hybrid of two of the following four types of algorithms.

1. Prefix doubling algorithms start with the length-1 prefix of each suffix and
determine their ranks, i. e., the number of smaller length-1 prefixes. Next, those
ranks are used to determine the ranks of the length-2 prefixes. The length of
the prefixes is doubled during each iteration until all ranks are unique.

2. Recursive algorithms reduce the size of the text until the suffixes can easily be
sorted, and then recursively solve the problem for the larger texts.

3. Induced copying algorithms sort a small subset of suffixes and induce the lex-
icographical order of all other suffixes using the sorted suffixes. Baier [Bai16]
described another approach they call grouping that is another form of induced
copying. Here, suffixes are assigned to groups that are then refined and thus
implicitly sorted (similar to induced copying), but the groups have more complex
properties that are used to obtain a linear time algorithm.

We describe these types in more detail whenever we explain corresponding dis-
tributed suffix array construction algorithms. A chronologically sorted overview of all
main memory suffix array construction algorithms including their types is depicted
in Figure 4.2. For a detailed description of these algorithms, we refer to the survey
article by Puglisi et al. [Pug+07] and the recent and complete survey by Bingmann
[Bin18, p. 168–176].

90

4.1 SUFFIX ARRAY CONSTRUCTION ALGORITHMS

1990

1999

2000

2002

2003
2004
2005
2006
2007
2008
2009

2011

2016

2017

Prefix
Doubling Induced Copying Recursion

[MM93]
original

[LS07]
qsufsort

[SS07]
bpr

[BW94]
BWT

[Sew00]
1/2 copy

[IT99]
A/B copy

[MF04]
deep-shallow

[Man04]
chains

[Mor06]
divsufsort

[MP07]
cache aware

[BK03]
diffcover

[Mor08; Non+11]
SAIS/SADS

[Non13]
SACA-K

[Li+18]
O(1) space

[Got17]
O(1) space

[Far97]
O(n) tree

[Kär+06]
DC3

[Kim+05]
mod2 split

[Hon+09]
mod2

[KA05]
L/S split

[Na05]
succinct

[Kim+04]
fixed Σ

[NZ07]
O(n lg |Σ|) [AN08]

SFE-coding

[Bai16]
GSACA

Figure 4.2. Historical development of suffix sorting algorithms in main memory
(enhanced and updated, based on [Bin18; Pug+07]). For each algorithm, we cite
its most recent publication, and the years on the left hand side show the year of its
first publication. In some cases, the years do not match, e. g., due to a later journal
publication. Suffix sorting algorithms are marked with a grey background (), if
they have linear running time, and a brown background (), if an implementation is
publicly available. We separate the algorithms in four types and connect algorithms
that share algorithmic ideas by arrows. The dashed algorithms can be used to compute
the suffix array, however, were developed to compute other data structures.

91

CHAPTER 4 AN EXCURSION TO SUFFIX SORTING IN MAIN MEMORY

Table 4.1. Characteristics of the texts in the Pizza & Chili corpus.

name size (MiB) σ

sources 201.10 230
proteins 1129.19 27

dna 385.21 16
english 2107.99 239

dblp.xml 281.10 97

name size (MiB) σ

Escherichia_Coli 107.47 15
cere 439.92 5

coreutils 124.83 192
einstein.de.txt 70.76 84
einstein.en.txt 351.03 105

influenza 147.63 15
kernel 155.03 125
para 409.37 5

world_leaders 18.23 63

Evaluation of Practical Main Memory Suffix Sorting
While there exists an extensive amount of work describing the main memory suffix
array construction algorithms, there is no prior work comparing them all. Out of the
24 main memory suffix array construction algorithms there are (to the best of the
author’s knowledge) 11 publicly available implementations of sequential main memory
suffix sorting algorithms, which we also highlighted in Figure 4.2. It is generally
accepted that DivSufSort [Mor06] is the fastest suffix array construction algorithm in
main memory—despite having a superlinear running time. In this section, we present
a practical evaluation of main memory suffix sorting algorithms.

Experimental Setup. We obtained the source code of all implementations and com-
piled all sources using GCC 8.3.0 and compiler flags -O3 and -march=native. The
source code of the suffix sorting algorithms and the code of the testing framework
SACABench is available at www.kurpicz.org/sacabench. We developed SACABench
to give all main memory suffix sorting algorithms a test bed, as they have never been
compared all together. It is easy to extend with new suffix sorting algorithms and
provided the plots that we present in this evaluation (which we slightly modified to
better fit in this dissertation). We conducted the experiments on LiDO.small nodes
and used the texts described in Section 1.4.2 as inputs. As all tested algorithms only
run main memory, we also use the text in the Pizza & Chili corpus [FN05], which is
the de facto standard corpus for text algorithms running in main memory, which we
describe in slightly more detail on the next page. For the experiments, we executed
each algorithms five times and report the median running time. We start the timer
as soon as the input is available in main memory and stop the timer when the suffix
array is computed. Some algorithms require minor modifications of the input, e. g.,
adding a constant number of sentinels. Due to the small effect on the running time,
we do not count these manipulations to the running time of the algorithm.

92

www.kurpicz.org/sacabench

4.1 SUFFIX ARRAY CONSTRUCTION ALGORITHMS

The Pizza & Chili Corpus. We give some basic characteristics of the texts in the
Pizza & Chili corpus in Table 4.1. On the right-hand side we list real world texts:
sources is source code from the Linux kernel and GCC, proteins contains protein data
from the Swiss-Prot (see Section 1.4.2), dna is DNA data from the Gutenberg Project,
english contains English text from the Gutenberg Project, and dblp.xml is XML data
containing computer science bibliography. We refer to [FN05] for more detailed descrip-
tions of the texts. Additionally, there are highly repetitive texts in the Pizza & Chili
corpus: Escherichia_Coli, cere, coreutils, einstein.de.txt, einstein.en.txt, influenza,
kernel, and world_leaders. For those texts, however, no additional information is
available. All texts are available at http://http://pizzachili.dcc.uchile.cl/.

Throughput and Memory Requirements. In Figure 4.3, we give the average of all
experiments, i. e., the average throughput and memory peaks of all algorithms on all
18 texts. We report the detailed results for each text in Figures 4.4–4.6. In all figures,
we give the throughput (upper half) and the memory peak (lower half).

Since we are interested in a suffix sorting algorithm that is fast on all types of
input, see Figure 4.3. We now look at the average throughput on all inputs to make
some general statements about suffix sorting in main memory. First and foremost, we
can report that the folklore that DivSufSort is the fastest suffix array construction
algorithm is true in our experiment.

DivSufSort achieves an average throughput 7.7MiB/s, which makes it the fastest
one. The second fastest one in SAIS-LITE with an average throughput of 4.7MiB/s.
Interestingly, both implementations have been coded by the same person—Yuta Mori.
While the difference in throughput seems quite large (DivSufSort is 1.63 times faster
than SAIS-LITE), on repetitive inputs SAIS-LITE’s throughput is closer to DivSuf-
Sort’s throughput. The third fastest algorithm is BPR (bucket-pointer refinement),
which has an average throughput of 4.54MiB/s, which is close to the throughput of
SAIS-LITE. All other tested suffix sorting algorithms do not even achieve halve of
DivSufSort’s throughput.

When we look at the memory peak during construction, we see that there are three
behaviors among the tested algorithms.

1. The first type requires only 5Bytes of memory per character of the input. This
also includes algorithms that require slightly more memory, e. g., a constant
amount of memory for each character in the alphabet. This is constant for these
implementation that limit the alphabet size to 256. Deep-Shallow, DivSufSort,
SACA-K, SAIS-LITE, and qsufsort belong to this type.

2. Next, there are algorithms that require 5Bytes of memory per character of the
input in addition to a non-constant number that is less than 1Byte per character.
SADS and SAIS belong to this type.

3. Finally, there are algorithm that require a huge amount of memory compared
to the first two types. BPR, DC3, GSACA, and MSufSort belong to this type.

93

http://http://pizzachili.dcc.uchile.cl/

CHAPTER 4 AN EXCURSION TO SUFFIX SORTING IN MAIN MEMORY

4.
54

0.
67

3.
12

7.
7

2.
07 2.

98
2.

41
1.

39
4.

7
1.

79 2.
07

th
ro

ug
hp

ut
[M

iB
/s

]

Average over all texts

22
.0

9
28

.4
8

5.
01 5

17
9.

59
5

5.
39 5
5.

3 5

m
em

or
y

pe
ak

[B
/n

]

BPR [SS07] DC3 [KS03] Deep-Shallow [MF04] DivSufSort [Mor06]
GSACA [Bai16] MSufSort [MP07] SACA-K [Non13] SADS [Non+11]
SAIS-LITE [Mor08] SAIS [Non+11] qsufsort [LS07]

Figure 4.3. Average throughput in MiB per second and memory peak in Bytes per
character of the input over all texts given in Table 4.1, which are shown in detail in
Figures 4.4–4.6.

The memory peak of BPR, DC3, Deep-Shallow, MSufSort, SADS, and SAIS does
depend on the input. All other algorithms have no measurable

While these observations summarize the experiments quite well, we now have a look
at the detailed results, which we give in Figures 4.4–4.6.
Most importantly, SAIS-LITE is faster than DivSufSort on einstein.en.txt where

it is 9.7% faster, which is a repetitive input. Additionally, on the inputs coreutils
and influenza DivSufSort is only slightly faster than SAIS-LITE (3.8% and 8.7%,
respectively).
However, there are also inputs where SAIS-LITE is not even the second fastest

suffix sorting algorithm out of the ones we tested. On proteins, SAIS-LITE is slower
than BPR, Deep-Shallow, MSufSort, and qsufsort. Here, it is 2.52 times slower than
DivSufSort. The same is true for dna, Prot, and Wiki. Note that all algorithms that
are faster than SAIS-LITE also require more memory than SAIS-LITE.
In conclusion, DivSufSort is not only the fastest but also one of the most memory

efficient suffix sorting algorithms that has a publicly available implementation. For
that reason, we take a detailed look at it in the next section.

94

4.1 SUFFIX ARRAY CONSTRUCTION ALGORITHMS

6.
24

0.
62

4.
94

9.
24

2.
35 3.
08

3.
17

1.
87

5.
59

2.
43 2.
55

th
ro

ug
hp

ut
[M

iB
/s

]

CommonCrawl (512 MiB)

4.
59

0.
96

4.
72 5.

83
1.

7 2.
93

2.
21

1.
15

3.
97

1.
69 2.

37

DNA (512 MiB)

5.
07

0.
52

4.
11

6.
16

1.
74

3.
17

1.
61

0.
87

2.
44

1.
1

3.
07

Prot (512 MiB)
22

.2
1

28
.9

1
5.

04 5
17

9.
03

5
5.

49 5
5.

38 5

m
em

or
y

pe
ak

[B
/n

]

22
25

.2
3

5.
01 5

17
10

.6
5

5.
45 5

5.
32 5

22
.0

1
28

.5
3

5.
01 5

17
9.

1
5

5.
56 5

5.
46 5

5.
25

0.
59

4.
9

8.
54

1.
94 3.

79
2.

67
1.

52
4.

88
1.

95 2.
66

th
ro

ug
hp

ut
[M

iB
/s

]

Wiki (512 MiB)

3.
69

0.
75

2.
56

7.
62

2.
34

1.
78 2.
07

1.
18

6.
27

1.
56 1.
73

cere
6.

1
0.

79 2.
3

10
.5

9
2.

66
2.

15 4.
02

2.
68

10
.2

3.
36

1.
49

coreutils

22
.1

3
28

.6
9

5.
01 5

17
9.

1
5

5.
48 5

5.
36 5

m
em

or
y

pe
ak

[B
/n

]

22
28

.8
6

5.
01 5

17 10
.8

7
5

5.
2 5

5.
18 5

22
.5

1
28

.9
4

5.
02 5

17
9.

1
5

5.
21 5

5.
19 5

BPR [SS07] DC3 [Kär+06] Deep-Shallow [MF04] DivSufSort [Mor06]
GSACA [Bai16] MSufSort [MP07] SACA-K [Non13] SADS [Non+11]
SAIS-LITE [Mor08] SAIS [Non+11] qsufsort [LS07]

Figure 4.4. Throughput in MiB per second and memory peak in Bytes per character
of the input of the main memory suffix sorting algorithms.

95

CHAPTER 4 AN EXCURSION TO SUFFIX SORTING IN MAIN MEMORY

6.
2

0.
77

5.
82

10
.2

5
2.

29 4.
35

3.
63

2.
26

8.
05

2.
92

2.
82

th
ro

ug
hp

ut
[M

iB
/s

]

dblp.xml

3.
85

0.
6

4.
83 5.
23

1.
75

3.
21

2.
68

1.
47

3.
19

2.
01

1.
84

dna

4.
98

0.
82 2.

1
10

.0
2

2.
48 3.

68
2.

59
1.

82
8.

39
2.

14
1.

59

einstein.de.txt
22

.0
2

27
.9

5
5.

01 5
17

9.
18

5
5.

33 5
5.

26 5

m
em

or
y

pe
ak

[B
/n

]

22
.0

2
28

.9
1

5.
01 5

17 10
.0

9
5

5.
57 5

5.
37 5

22
.1

4
28

.8
6

5.
01 5

17
9.

12
5

5.
19 5

5.
18 5

4.
69

0.
79 1.
35

8.
19

2.
06 2.

98
2.

66
1.

67
8.

99
2.

03
1.

39

th
ro

ug
hp

ut
[M

iB
/s

]

einstein.en.txt

4.
07

0.
51

3.
75

7.
27

1.
76 2.

8
1.

66
0.

93
3.

04
1.

19 1.
9

english
4.

13
0.

75
3.

37
7.

89
2.

73 2.
99

2.
8

1.
79

6.
95

2.
23

1.
76

Escherichia_Coli

22
.0

5
28

.9
1

5.
02 5

17
9.

13
5

5.
19 5

5.
18 5

m
em

or
y

pe
ak

[B
/n

]

22
.1

7
28

.9
1

5.
01 5

17
9.

21
5

5.
51 5

5.
36 5

22
.0

5
28

.9
1

5.
01 5

17
10

5
5.

28 5
5.

23 5

BPR [SS07] DC3 [Kär+06] Deep-Shallow [MF04] DivSufSort [Mor06]
GSACA [Bai16] MSufSort [MP07] SACA-K [Non13] SADS [Non+11]
SAIS-LITE [Mor08] SAIS [Non+11] qsufsort [LS07]

Figure 4.5. Throughput in MiB per second and memory peak in Bytes per character
of the input of the main memory suffix sorting algorithms (continuation 1 of 2).

96

4.1 SUFFIX ARRAY CONSTRUCTION ALGORITHMS

4.
21

0.
84 2.

63
8.

77
2.

58 3.
06

2.
42

1.
61

8.
07

2.
12

2.
1

th
ro

ug
hp

ut
[M

iB
/s

]

influenza

5.
74

0.
77 2.

07
10

.7
2

2.
45 3.
07 3.
68

2.
41

9.
79

3.
02

1.
35

kernel

3.
69

0.
72

2.
5

7.
38

2.
34

2.
2

2.
04

1.
16

5.
99

1.
52 1.
84

para
22

.0
4

28
.6

9
5.

01 5
17

9.
7

5
5.

21 5
5.

19 5

m
em

or
y

pe
ak

[B
/n

]

22
.1

3
28

.9
4

5.
01 5

17
9.

06
5

5.
2 5

5.
18 5

22
28

.7
9

5.
01 5

17 11
.0

1
5

5.
21 5

5.
19 5

4.
36

0.
59

3.
23

8.
45

2
4.

03
2.

55
1.

45
4.

08
1.

81 2.
72

th
ro

ug
hp

ut
[M

iB
/s

]

proteins

6.
87

0.
7

6.
07

12
.0

5
2.

57 5.
04

4.
06

2.
51

7.
76

3.
31

3.
05

sources
6.

57
1.

32 5.
1

22
.0

8
3.

18 3.
53 6.

69
4.

45
17

.1
5.

79
2.

14

world_leaders

22
.0

1
28

.8
6

5.
01 5

17
9.

1
5

5.
45 5

5.
38 5

m
em

or
y

pe
ak

[B
/n

]

22
.4

6
28

.8
6

5.
01 5

17
9.

06
5

5.
43 5

5.
33 5

22
.1

2
28

.9
1

5.
01

5.
01

17 10
.2

5
5

5.
2 5

5.
16 5

BPR [SS07] DC3 [Kär+06] Deep-Shallow [MF04] DivSufSort [Mor06]
GSACA [Bai16] MSufSort [MP07] SACA-K [Non13] SADS [Non+11]
SAIS-LITE [Mor08] SAIS [Non+11] qsufsort [LS07]

Figure 4.6. Throughput in MiB per second and memory peak in Bytes per character
of the input of the main memory suffix sorting algorithms (continuation 2 of 2).

97

CHAPTER 4 AN EXCURSION TO SUFFIX SORTING IN MAIN MEMORY

4.2 DISMANTLING DIVSUFSORT
We have seen that the fastest and one of the most space-conscious algorithms to
construct the suffix array is DivSufSort (implemented by Yuta Mori), which however
has only appeared as (almost undocumented) source code, and has never been described
in an academic context (except for the paper on which this section is based on [FK17]).
The speed and its space-consciousness make DivSufSort still the method of choice in
many software systems, e. g., in bioinformatics libraries [PS15] and the succinct data
structures library (SDSL) [Gog+14a]. Also, DivSufSort has been extended to work
in different models of computation, e. g., shared-memory [Lab+17] and distributed
memory, see Chapter 5. Ultimately, DivSufSort is one of the most used suffix array
construction algorithms in practice.

For this reason, we take a detailed look at it in this section. Since it roughly consists
of three phases, the section has a similar structure:

1. We start by classifying the suffixes in Section 4.2.1. The classification is easy
to compute, as we can assign each suffix to a class based on its length-2 prefix,
which can be done in a single scan of the text.

2. Next, we sort all suffixes of one of the classes that contains at most half of
all suffixes, in Section 4.2.2. This is the only time we have to sort suffixes by
comparing them character-wise.

3. In the last step, which we describe in Section 4.2.3, we can induce the lexico-
graphical order of all other suffixes based on the ones that we have sorted. This
requires two scans of the (at the beginning partially filled) suffix array.

The description of the phases is supplemented with line numbers that correspond to
lines in the original source code of the DivSufSort implementation by Mori [Mor06], of
which we also show the relevant extracts (with matching line numbers) in Appendix A.

4.2.1 Classification of Suffixes
We use the classification introduced by by Itoh and Tanaka [IT99] to distinguish
between two classes of suffixes (originally called type A and type B suffixes) in com-
bination with a notation established by Kärkkäinen et al. [Kär+17] for a similar
classification that is used in SAIS [Non+11] and other suffix array construction al-
gorithms, e. g., [Bin+16a; Got17; Li+18]. Here, each suffix belongs to one class and
up to one sub-class. The classification is based on a length-2 prefix of the suffix. We
associate the starting position of the suffix with its class:

Definition 4.1. Let T be a text of length n and i ∈ [0, n), then the suffix T [i..n)
belongs to exactly one of the following two classes.

(C1) i ∈ C− ⇐⇒ T [i] > T [i+ 1] or (T [i] = T [i+ 1] and i+ 1 ∈ C−) or i = n− 1,

(C2) i ∈ C+ ⇐⇒ T [i] < T [i+ 1] or (T [i] = T [i+ 1] and i+ 1 ∈ C+).

98

4.2 DISMANTLING DIVSUFSORT

i 0 1 2 3 4 5 6 7 8 9 10 11 12
T [i] c d c d c d c d c c d d $

Class C+. C− C+. C− C+. C− C+. C− C+� C+. C− C− C−

Figure 4.7. Classification of T = [c, d, c, d, c, d, c, d, c, c, d, d, $], which is our running
example for the rest of this section.

The last suffix T [n− 1..n) is in C− by definition, as the empty string is lexicograph-
ically smaller than any suffix. Whenever the class of two consecutive suffixes differs,
we are interested in the suffix before the change. We call C+. a sub-class of C+, and
suffixes in C+. are often historically called B?-suffixes [Mor06].

Definition 4.2. Let T be a text of length n and i ∈ [0, n), then

(C3) i ∈ C+. ⇐⇒ i ∈ C+ and i+ 1 ∈ C−.

We say “a suffix T [i..n) is in C” if i ∈ C, where C can denote any (sub-)class. For
any (sub-)class C, we let C-suffixes denote all suffixes T [i..n) with i ∈ C. Note that
the number of suffixes in C+., i. e., |C+.|, is at most n/2, as at most any other suffix
can be in C+ and left of a suffix in C−. We define m := |C+.|. For an example of the
classification see Figure 4.7.

Sub-classes are later used to identify fine-grained intervals in the suffix array, which
we make heavy use of during our inducing step, see Section 4.2.3. We further need to
filter suffixes by their first (two) characters. For any (sub-)class of suffixes C described
above, let α, β ∈ Σ. Then:

◦ Cα := {i ∈ C : T [i] = α} and

◦ Cαβ := {i ∈ Cα : T [i+ 1] = β}.

Using these filters, we can sort suffixes based on their (sub-)class. To this end, we
also need to identify all suffixes in C+ that are not in C+. i. e., that are followed by
a suffix in C+ instead of a suffix in C−. For this reason, we introduce the additional
class C+� := C+ \ C+..

Lemma 4.1. Let T be a text of size n over an alphabet Σ and i, j ∈ [0, n), then

1. T [i..n) < T [j..n), if i ∈ C−αβ and j ∈ C+
αβ for any α, β ∈ Σ, and

2. T [i..n) < T [j..n), if i ∈ C+.
αβ and j ∈ C+�

αβ for any α, β ∈ Σ.

Proof. We now prove the first case. By definitions (C1) and (C2) this case occurs if
and only if α = β, as otherwise either C−αβ or C+

αβ is empty. Hence, the LCP value
of the suffixes is at least two. Now, let γ = T [i + lcp(i, j)] and γ′ = T [j + lcp(i, j)]
be the first characters where the suffixes differ. Therefore, we know that γ ≤ α and

99

CHAPTER 4 AN EXCURSION TO SUFFIX SORTING IN MAIN MEMORY

γ′ ≥ α—again, due to definitions (C1) and (C2) of the classes. Since the characters
differ, at least one of the inequalities is strict, which concludes the proof of the first
case.

The argument for the second case works analogously. Since the last suffix of a text
is in C− by definition (C1), we know that i ∈ [0, n − 1) and j ∈ [0, n − 2). We also
know that i+ 1 ∈ C−, and j + 1 ∈ C+, due to definitions (C2) and (C3). Therefore,
T [i+2] < β ≤ T [j+2], which proves this case. Note that it is possible that T [i+2] = ε,
i. e., an empty string, if T [i+ 1] = $. Still, ε < β by definition.

Let −→C denote the starting positions of the suffixes in C in lexicographical order. In
conjunction with Lemma 4.1 this allows us to define the suffix array solely based on
the (sub-)classes:

Observation 4.1. We can express the SA of a text over an alphabet Σ = [0, σ) as
follows:

SA =
−−→
C−00
−−→
C+.

00
−−→
C+�

00
−−→
C−01
−−→
C+.

01
−−→
C+�

01 . . .
−−−−−−→
C−σ−1σ−1

−−−−−−→
C+.
σ−1σ−1

−−−−−−→
C+�
σ−1σ−1.

a b c d e · · · z
a
b
c
d
e
...
z

Figure 4.8.
BUCKET_B (gray)
and BUCKET_-BSTAR
represented as a 2-
dimensional array.

We call the positions in the suffix array that are covered
by −−→Cαβ-suffixes bucket. Throughout the computation we
utilize two additional arrays to store information about the
buckets: (1.) BUCKET_A for starting or ending positions of
suffixes in C− of size σ, and (2.) BUCKET_B for starting or
ending positions of suffixes in C+ and suffixes in C+.of size
σ2. For an easier access to suffixes in C+ and C+., we say
that BUCKET_B[α, β] is short for BUCKET_B[α·σ+β] and
BUCKET_BSTAR[α, β] is short for BUCKET_B[β · σ + α],
when we identify the characters of the text as integers in
[0, σ). Information about the (sub-)classes C+ and C+. of
suffixes can be stored in the same array, as C+.

αα = ∅ for all
α ∈ Σ and C+

αβ = ∅ for all α, β ∈ Σ with α > β, due to
definitions (C2) and (C3). We sketch this memory layout
in Figure 4.8.

Initializing DivSufSort
In addition to the classification, which we do not store explicitly, information on the
sizes of all (sub-)classes are computed and stored. This initialization of DivSufSort
is listed in divsufsort.c. First, we scan T from right to left (line 60), determine the
type of each suffix, and store the sizes of the corresponding buckets in BUCKET_A,
BUCKET_B and BUCKET_BSTAR (lines 62, 69, and 65). In addition, we store C+.

at the end of SA such that SA[n−m..n) contains C+. in increasing order, i. e., text
order (line 66). We call this part of the suffix array PAb where PAb[i] = SA[n−m+ i]
for all 0 ≤ i < m (line 94), see Figures 4.9a and 4.9b, where we highlight PAb in light
blue () on the next page.

100

4.2 DISMANTLING DIVSUFSORT

Next (lines 81 to 90), we compute the prefix sum over the sizes of C−α , C+
αβ , and

C+.
αβ for all α, β ∈ Σ, such that

BUCKET_A[α] =
∑

β∈[0,α)


|C−β |+

∑

β′∈[β,σ)

|C+
ββ′ |


 ,

i. e., the leftmost position of the bucket, and

BUCKET_BSTAR[α, β] =
∑

α′∈[0,α], β′∈[α′,β]

|C+.
α′β′ |,

i. e., the rightmost position of the bucket with respect only to other suffixes in C+..
Hence, the positions in BUCKET_BSTAR are in [0,m), see Figures 4.9c and 4.9d,
where Figure 4.9c remains unchanged. During the sorting step, we do not sort the
text positions directly. Instead we sort references to these positions. These references
are stored in SA[0..m) (line 97). During this step, BUCKET_BSTAR[α, β] is updated
(line 97), such that at the end of the computation, it contains the leftmost reference
corresponding to a suffixes in C+.

αβ . Again, those positions are within the interval
[0,m). Then, the reference to the last rightmost (in text order) suffix in C+. is put at
the beginning of its corresponding bucket (line 100). This reference is a special case as
it has no successor in PAb that is required for the comparison of two C+.-substrings
(see next section), as depicted in Figures 4.9e and 4.9f.

4.2.2 Sorting of Sampled Suffixes
In this section, we describe how the suffixes in C+. are sorted in three steps. To this
end, we need C+.-substrings. Let next(i) := min{j > i : j ∈ C+. ∪ {n− 1}}, i. e., the
starting position of the next C+.-suffix in text order (or the end of the text if i is the
last position). Then, we can define the C+.-substrings as follows.

Definition 4.3 (C+.-substrings). For any C+.-suffix i ∈ C+. the C+.
αβ -substrings is

the substring S := T [i..min{next(i) + 2, n}).

Now, we consider all C+.
αβ -suffixes in text order, as we obtain their starting positions

during the classification. Then, we sort all C+.
αβ -substrings independently for all

α, β ∈ Σ with α < β (lines 134 to 142) using functions defined in sssort.c. We can
do so, because C+.

αβ -substrings are implicitly sorted by the first two characters. Then
(second step starting at line 146), a partial ISA (named ISAb) is computed, containing
the ranks of the partially sorted C+.-suffixes (sorted by their initial C+.-substrings).
Using these ranks we compute the lexicographical order of all C+.-suffixes adopting an
approach similar to prefix doubling (see Section 5.2). In the last step, we use functions
defined in trsort.c (line 159). We augment the approach with repetition detection as
introduced by Maniscalco and Puglisi [MP07].

101

CHAPTER 4 AN EXCURSION TO SUFFIX SORTING IN MAIN MEMORY

i 0 1 2 3 4 5 6 7 8 9 10 11 12
T [i] c d c d c d c d c c d d $

SA[i] 0 0 0 0 0 0 0 0 0 2 4 6 9

(a)

$ c d (c,c) (c,d)
BUCKET_A 1 0 6 - -
BUCKET_B - - - 1 -
BUCKET_BSTAR - - - - 5

(b)

$ c d
i 0 1 2 3 4 5 6 7 8 9 10 11 12

T [i] c d c d c d c d c c d d $

SA[i] 0 0 0 0 0 0 0 0 0 2 4 6 9

(c)

$ c d (c,c) (c,d)
BUCKET_A 0 1 7 - -
BUCKET_B - - - 1 -
BUCKET_BSTAR - - - - 5

(d)

$ c d
i 0 1 2 3 4 5 6 7 8 9 10 11 12

T [i] c d c d c d c d c c d d $

SA[i] 4 0 1 2 3 0 0 0 0 2 4 6 9

(e)

$ c d (c,c) (c,d)
BUCKET_A 0 1 7 - -
BUCKET_B - - - 1 -
BUCKET_BSTAR - - - - 0

(f)

Figure 4.9. The suffix array and the buckets after the first scan of T are shown in
(a) and (b). PAb has a light blue background () in (a), (c), and (e) and contains the
text positions of all C+.-suffixes in text order. The buckets in (b) contain the number
of suffixes beginning with the corresponding characters. In (d), they are updated such
that the first position of each Cα-bucket is stored in BUCKET_A[α] (bold entires).
The suffix array does not change during this update, see (c). In (e) we store references
to the text positions in SA[0..m), which has a green background () and update the
corresponding BUCKET_BSTAR with the first position in SA[0..m) (bold entry in (f)).

Sorting the C+.-Substrings

All C+.
αβ -substrings in a BUCKET_BSTAR are sorted in-place. The interval of the

suffix array that has not been used yet (SA[m..n−m)) serves as a buffer, denoted by
buf with buf[i] := SA[m+i] for all i ∈ [0, n−2m), during the sorting (line 133). Sorting
can be conducted in parallel. All C+.-substrings are presorted by beeing in the same
BUCKET_BSTAR. Therefore, we can sort multiple BUCKET_BSTAR in parallel (see
divsufsort.c, lines 105 to 131), as C+.-substrings in other buckets are either all smaller
or larger. Here, each processing element gets a buffer of size b|buf|/pc, where p is the
number of processing elements. All following line numbers refer to sssort.c.

102

4.2 DISMANTLING DIVSUFSORT

$ c d
i 0 1 2 3 4 5 6 7 8 9 10 11 12

T [i] c d c d c d c d c c d d $

SA[i] 3 0 1̃ 2̃ 4 0 0 0 0 2 4 6 9

(a)

Ref. Text Pos. C+.-substring
3 6 cdcc

0 0 cdcd

1 2 cdcd

2 4 cdcd

4 9 cdd$

(b)

Figure 4.10. The lexicographically sorted references in green () of the C+.-
substrings in SA[0..m) in blue () in (a). For readability we write ĩ if i is bitwise
negated. The content of the buckets is not changed in this step. The references, their
corresponding (lexicographically sorted) text positions and the C+.-substrings are
shown in (b).

In the default configuration we only sort 1024 elements at once (see SS_BLOCK-
SIZE, e. g., line 763). If the size of buf is smaller than 1024 or the size of the current
bucket, the bucket is divided in smaller subbuckets which are then sorted and merged
(see line 767, splitting due to the buffer size and the loop at line 770 splitting with
respect to the number of elements). Lines 789 to 802 are used to merge the last
considered subbuckets. If the currently sorted bucket contains the last C+.-substring,
then it is moved to the corresponding position (lines 811 and 813).

The heavy lifting is done by the function ss_mintrosort, which is an implementation
of Introspective Sort (ISS) [Mus97]. It sorts all C+.-substring within the interval
[first, last] (line 310). ISS uses Multikey Quicksort (MKQS) [BS97] and Heapsort
(HS). MKQS is used blg (last− first)c times to sort an interval before HS is used
(if there are still elements in the interval that have been equal to the pivot each time,
see line 333). MKQS divides each interval into three subintervals with respect to
a pivot element. The first subinterval contains all substrings whose k-th character
is smaller than the pivot, the second subinterval contains all substrings whose k-th
character is equal to the pivot, and the last subinterval contains all substrings whose
k-th character is greater than the pivot. We call k the depth of the current iteration
(line 332). ISS is not implemented recursively; instead, a stack is used to keep track of
the unsorted subintervals and the smaller subintervals are always processed first. This
guarantees a maximum stack size of dlg `e, where ` is the initial interval size [Meh84,
p. 67]. The subintervals containing the substrings whose k-th character is not equal to
the pivot are sorted using MKQS blg (last− first)c times before using HS, where
now last and first refer to the first and last positions of these intervals (lines 414 and
428). Unsorted (sub)bucket smaller than a threshold (8 in the default configuration)
are sorted using Insertionsort and then marked sorted (line 326). Here, we use the
function ss_compare to compares two C+.-substrings starting at the current depth.

103

CHAPTER 4 AN EXCURSION TO SUFFIX SORTING IN MAIN MEMORY

i 0 1 2 3 4 5 6 7 8 9 10 11 12
T[i] c d c d c d c d c c d d $

SA[i] -1 0 1 2 -1 3 3 3 0 4 4 6 9

Figure 4.11. ISAb contains the inverse suffix array of the sorted C+.-substrings.
ISAb[i] = SA[m+ i] for all 0 ≤ i < m in amber (). While computing ISAb, we mark
completely sorted intervals in SA[0..m − 1] in green (). The leftmost position of a
sorted interval of length k is changed to −k, e. g., SA[0] and SA[4].

There are C+.-suffixes that are not sorted completely by their initial C+.-substrings
e.g., in our example T = [c, d, c, d, c, d, c, d, c, c, d, d, $] the C+.-substring cdcd occurs
three times, see Figure 4.10. Hence, we cannot sort the corresponding C+.-suffixes just
using the C+.-substring. C+.-substrings that are not unique, are marked by storing
their bitwise negated reference (line 178). Only the first reference in an interval
of unsorted substrings is stored normally to identify the beginning of said interval
(line 178). The idea of sorting the suffixes in an (α, β)-bucket up to a certain depth is
similar to the approach of Manzini and Ferragina [MF04], who sort the suffixes up to
a certain LCP value before switching techniques.

Computing the Partial Inverse Suffix Array.
After the C+.-substrings are sorted, we compute the ISA for the partially sorted C+.-
substrings (lines 146 to 156). The inverse suffix array for the C+.-suffixes is stored
in SA[m..2m) and referred to as ISAb with ISAb[i] = SA[m + i]. If m > n/3, ISAb
overlaps with PAb. This does not matter, as we do not require the text positions
at this point any more. ISAb[i] contains the rank of the i-th C+.-suffix, i. e., the
number of lexicographically smaller C+.-suffixes. All references to line numbers in
this subsection refer to divsufsort.c. We scan SA[0..m) from right to left (line 146)
and distinguish between bitwise negated references (values < 0, starting at line 154)
and non-negated references (values ≥ 0, starting at line 147). In the first case, we
have reached an interval where we have references of suffixes which could not be
sorted comparing only the C+.-substring. To each of those suffixes we assign the
greatest feasible rank, i. e., m− i, where i is the number of lexicographically greater
suffixes (similar to Larsson and Sadakane [LS07]). In addition we also store the bitwise
negation of the references, i. e., the original reference. In the other case (a value ≥ 0)
we simply assign the correct rank to the C+.-suffix. Whenever we scan an interval of
completely sorted C+.-suffixes, we mark the first position of the interval in SA[0..m)
with −k, where k is the size of the interval (line 150). Now we can identify all sorted
intervals as they start with a negative value whose absolute value is the length of the
interval. All remaining positions can still contain values from previous computations.
In our example (see Figure 4.11) we have two fully sorted intervals of length 1 at SA[0]
and SA[4], and an only partially sorted interval in SA[1..3].

104

4.2 DISMANTLING DIVSUFSORT

Sorting the C+.-Suffixes.
In the last part of the C+.-suffix sorting in DivSufSort we compute the correct ranks of
all C+.-suffixes and store them in ISAb. During this step, we only require information
about the ranks of the suffixes and have no random access to the text, i. e., PAb
is not required any more. All line numbers in this section refer to trsort.c. Using
ISAb, we compute the ranks of all C+.-suffixes using an approach similar to prefix
doubling [LS07]. Instead of doubling the length of the suffixes we double the number of
considered C+.-substrings that can have an arbitrary length (line 563). Here, ISAd[i]
refers to the rank of the (i + 2k)-th C+.-suffix, where k is the current iteration of
the doubling algorithm. Obviously, we need to update the ranks when we double the
number of considered substrings, i. e., compute the new ranks for the C+.-suffixes.
Since the ranks in the ISA are given in text order, we can access the rank of the next
(in text order) C+.-substring for any given substring.

Repetition Detection.
We use Quicksort (QS) to sort the C+.-substrings by their ranks. This allows us to use
the repetition detection introduced by Maniscalco and Puglisi [MP07] (see line 452 for
the identification and the function tr_copy for the computation of the correct ranks).
A repetition in T is a substring T [i..i+ rp) with r ≥ 2, p ≥ 0 and i, i + rp ∈ [0, n)
such that T [i..i+ p) = T [i+ p..i+ 2p) = · · · = T [i+ (r − 1)p..i+ rp). Here, we call
r is the number of repetitions and p is the period. Those repetitions are a problem if
T [i..n) is a C+.-suffix, since then T [kp..n) is a C+.-suffix for all k ≤ r. We can simply
sort all those suffixes by looking at the first character not belonging to the repetition
(T [i+ rp+ l] 6= T [i+ l]). If T [i+ rp+ l] < T [i+ l] then T [i+ (r − 1)p+ 1, i+ rp] <
T [(i− 1) + (r − 1)p+ 1, (i− 1) + rp] for all 1 < i ≤ r. The analogous case is true for
T [i+rp+l] > T [i+l], i. e., T [i+(r−1)p+1, i+rp] > T [(i−1)+(r−1)p+1, (i−1)+rp]
for all 1 < i ≤ r. This is done in lines 276 (and 282), where we increase (and decrease)
the ranks of all suffixes in the repetition. The identification of a repetition is supported
by QS, which divides each interval into three subintervals (like MKQS). We choose
the median rank of the C+.-suffixes that are considered during this doubling step as
the pivot element for QS (line 455). If the (current) rank of the first C+.-suffix in
the subinterval (considered in this doubling step) is equal to the pivot element, i. e.,
ISAb[i] = ISAd[i] where i is the first C+.-suffix in the interval, then we have found a
repetition (line 452, where tr_ilg denotes the logarithm of the interval size, which is
also the number of iterations until Heapsort is used instead of QS).

From the Inverse Suffix Array to sorted C+.-Suffixes
Now we have computed the ISA of all C+.-suffixes (stored in ISAb), i. e., we have
all C+.-suffixes in lexicographic order. From this point on, all line numbers refer to
divsufsort.c, again. Next (see loop starting at line 162), we scan T from right to left,
and when we read the i-th C+.-suffix at position j, we store j at position SA[ISAb[i]].
Since we use all the C+.-suffixes to induce the C+-suffixes (and we do not want to
induce C−-suffixes during the first inducing phase) we store the bitwise negation of

105

CHAPTER 4 AN EXCURSION TO SUFFIX SORTING IN MAIN MEMORY

i 0 1 2 3 4 5 6 7 8 9 10 11 12
T[i] c d c d c d c d c c d d $

SA[i] -1 -4 1 0 -1 3 2 1 0 4 4 6 9

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12
c d c d c d c d c c d d $

6̃ 4̃ 2̃ 0 9 3 2 1 0 4 4 6 9

(b)

$ c d
i 0 1 2 3 4 5 6 7 8 9 10 11 12

T[i] c d c d c d c d c c d d $

SA[i] 6̃ 4̃ 6̃ 4̃ 2̃ 0 9 1 0 4 4 6 9

(c)

$ c d (c,c) (c,d)
BUCKET_A 0 1 7 - -
BUCKET_B - - - 1 6
BUCKET_BSTAR - - - - 1

(d)

Figure 4.12. ISAb in amber () in (a) and (b) contains the ranks of all C+.-suffixes.
The lexicographically sorted text positions of the C+.-suffixes are shown green ()
in (b). Each text position i is bitwise negated if T [i− 1..n) has type C−. In (c) all
text positions of the C+.-suffixes are at their correct position in SA[0..n− 1] (). The
buckets d contain the leftmost position of the corresponding suffixes.

j if T [j − 1..n) has type C− (line 167). FiguresFigures 4.12a and 4.12b show the
transition in SA[0..m) for our example. Now, SA[0..m) contains the text positions
of all C+.-suffixes in lexicographic order. Next (see loop beginning at line 173), we
need to put these text positions at their correct position in SA[0..n) (line 182). While
doing so, we update BUCKET_B and BUCKET_BSTAR such that they contain the
rightmost position of the corresponding buckets (lines 177 and 185). Figures 4.12c
and 4.12d show this step for our running example.

4.2.3 Inducing of Suffixes
Due to the types of the suffixes, we know that in any (α, β)-bucket the C−-suffixes
are lexicographically smaller than the C+-suffixes, and that C+.-suffixes are lexico-
graphically smaller than C+�-suffixes, which allows us to express the suffix array as
buckets, see Observation 4.1. We also know that in lexicographic order, all consecutive
intervals of C+-suffixes are left of at least one C+.-suffix and all C−-suffixes are right
of at least one C+-suffix that starts with the same character, see Figure 4.7 for an
example. Now we scan SA twice: once from right to left, where all C+-suffixes are
induced (we can skip all parts of SA containing only C−-suffixes), and then from left
to right to induce all C−-suffixes. All following line numbers refer to difsufsort.c. A
step-by-step example is given in Figure 4.13.
During the inducing of the C+-suffixes, i. e., the first scan of SA (see loop starting

at line 205), whenever we read an entry i in SA such that i > 0 (line 211), we store the
entry i− 1 at the rightmost free position (a position in which a correct text position

106

4.2 DISMANTLING DIVSUFSORT

has not been stored yet) in the (T [i− 1], T [i])-bucket (line 220). If T [i− 2] > T [i− 1],
then T [i− 2..n) is an C−-suffix, which is not induced during the first scan, but the
bitwise negated value of i−1 is stored instead (line 217). Every position is overwritten
with its bitwise negated value. If the position was already bitwise negated, i. e., it has
been induced and the corresponding suffix has type C−, it is considered during the
next scan (line 226) and we negate it bitwise as preparation for the second scan. After
the first scan, all suffixes that have been used for inducing are represented by their
bitwise negated position whereas all other suffixes are represented by their position,
i. e., a positive integer. It should be noted that all induced suffixes are lexicographically
smaller than the suffix they are induced from: if we induce from an (α, β)-bucket, we
know that α < β, since we are considering C+-suffixes. In addition, we only induce
in (α, β)-buckets with α < β; only C+-suffixes are considered during this scan.

Before SA is scanned a second time, n− 1 is stored at the beginning of the T [n− 1]-
bucket (line 234). If T [n− 2..n) has type C−, we store n − 1 (we want to induce
T [n− 2..n) during the second scan). Otherwise, we store the bitwise negation of n−1.

During the second scan of SA (see loop starting at line 236), whenever an entry i of
SA is smaller than 0 it is overwritten by its bitwise negated value, i. e., the position of
the suffix in the correct position in the suffix array (line 249). Whenever i > 0 (line 237)
the suffix T [i− 1..n) is induced at the leftmost free position in the T [i − 1]-bucket
(line 243). Since all remaining suffixes are induced during this scan, it is sufficient to
identify the border using the α-buckets, i. e., the value stored in BUCKET_A[α]. If
the induced suffix is inducing a C+-suffix, its bitwise negated value is induced instead
(line 240). At the end of the scan, SA contains the indices of all suffixes in lexicographic
order. Hence, we have compute the suffix array, which we also show for our running
example in the last row of Figure 4.13, which concludes our description of DivSufSort.

4.2.4 Running Time and Memory Requirements
Now, we briefly look at the running time and memory requirements. The classification
of suffixes (Section 4.2.1) requires O(n) time, as we just have to scan the text once.
Sorting the C+.-suffixes (Section 4.2.2), however, requires O(n lgn) time due to the
prefix doubling like approach. We have to sort O(m) = O(n) C+.-suffixes, which
requires O(n lgn) time, when done as described, which is very fast in practice, as
shown in Section 4.1. Alternatively, one can use a recursive approach to sort the C+.-
suffixes, which requires O(n) time, e. g., [Got17; Li+18; Non+11; Non13]. Finally,
inducing of the suffixes (Section 4.2.3) can be done in O(n) time, because we just have
to scan the suffix array twice. Therefore, DivSufSort has a running time of O(n lgn).
DivSufSort requires O(σ2) words of space in addition to the input and the space

for the suffix array to store the additional information (Section 4.2.2). Admittedly,
the way it is implemented uses additional n bits of space to mark the suffixes, i. e.,
bitwise negating them during inducing (Section 4.2.3). This is realized by using signed
integers; we can only use all but one bit of each position in SA, implicitly using n bits.
This can be avoided by storing more additional information in the beginning as we
describe in Section 5.4, when we present a distributed variant of DivSufSort.

107

CHAPTER 4 AN EXCURSION TO SUFFIX SORTING IN MAIN MEMORY

BU
CK

ET
_

A[
$]

BU
CK

ET
_

A[
c]

BU
CK

ET
_

A[
d]

BU
CK

ET
_

B[
c,

c]
BU

CK
ET

_
BS

TA
R[

c,
d]

|Scanned Interval|
i 0 1 2 3 4 5 6 7 8 9 10 11 12

SA[i] 6̃ 4̃ 6̃ 4̃ 2̃ 0 9 1 0 4 4 6 9 0 1 7 1 1 F
irst

Induction
P
hase

SA[i] 6̃ 4̃ 6̃ 4̃ 2̃ 0 9 1 0 4 4 6 9 0 1 7 1 1
SA[i] 6̃ 8̃ 6̃ 4̃ 2̃ 0 9̃ 1 0 4 4 6 9 0 1 7 0 1
SA[i] 6̃ 8̃ 6̃ 4̃ 2̃ 0̃ 9̃ 1 0 4 4 6 9 0 1 7 0 1
SA[i] 6̃ 8̃ 6̃ 4̃ 2 0̃ 9̃ 1 0 4 4 6 9 0 1 7 0 1
SA[i] 6̃ 8̃ 6̃ 4 2 0̃ 9̃ 1 0 4 4 6 9 0 1 7 0 1
SA[i] 6̃ 8̃ 6 4 2 0̃ 9̃ 1 0 4 4 6 9 0 1 7 0 1
SA[i] 6̃ 8 6 4 2 0̃ 9̃ 1 0 4 4 6 9 0 1 7 0 1

SA[i] 12 8 6 4 2 0̃ 9̃ 1 0 4 4 6 9 0 1 7 0 1

SA[i] 12 8 6 4 2 0̃ 9̃ 1 0 4 4 6 9 1 1 7 0 1 Second
Induction

P
hase

SA[i] 12 8 6 4 2 0̃ 9̃ 11 0 4 4 6 9 1 1 8 0 1
SA[i] 12 8 6 4 2 0̃ 9̃ 11 7 4 4 6 9 1 1 9 0 1
SA[i] 12 8 6 4 2 0̃ 9̃ 11 7 5 4 6 9 1 1 10 0 1
SA[i] 12 8 6 4 2 0̃ 9̃ 11 7 5 3 6 9 1 1 11 0 1
SA[i] 12 8 6 4 2 0̃ 9̃ 11 7 5 3 1 9 1 1 12 0 1
SA[i] 12 8 6 4 2 0 9̃ 11 7 5 3 1 9 1 1 12 0 1
SA[i] 12 8 6 4 2 0 9 11 7 5 3 1 9 1 1 12 0 1
SA[i] 12 8 6 4 2 0 9 11 7 5 3 1 10 1 1 13 0 1

Figure 4.13. During the first phase, we induce C+-suffixes and only scan intervals
where C+- and C+.-suffixes occur. Each of those intervals ends left of the succeeding
α-bucket. Its borders are stored in the corresponding BUCKET_BSTAR (both high-
lighted in cyan , the right border is not part of the interval). After the first phase
we put the last suffix at the beginning of its corresponding bucket. During the second
phase we scan the whole array, as we also store the bitwise negation of all entries that
have already been used for inducing. The currently considered entry is marked lime
(). The entries highlighted orange () are the positions where a value is induced.
The bucket that contains the position is highlighted in the same color. Entries that
have changed are bold in the following row.

108

4.3 INDUCING THE LCP ARRAY

T =
i i′ j j′

T [i..i′) T [j..j′)T [i′..` + 1) T [j′..` + 1)

Figure 4.14. Let T [i..n), T [j..n), T [i′..n) and T [j′..n) be C+.-suffixes such that there
is no C+.-suffix T [k..n) with i < k < i′ or j < k < j′, and let the LCP value of
T [i..n) and T [j..n) be ` = lcp(i, j) + i. Then the LCP value of T [i′..n) and T [j′..n) is
lcp(i′, j′) = `− i′ = lcp(i, j)− (i′ − i).

4.3 INDUCING THE LCP ARRAY
We now show how to modify DivSufSort such that it also computes the LCP array
in addition to the suffix array. To do so, we extend DivSufSort at three points of
the computation of the suffix array. First, we need to compute the LCP values of
all suffixes in C+.. Next, during the inducing step, we also induce the LCP values
for C−- and C+-suffixes. For this we utilize a technique also described in [Bin+16a;
Fis11] that allows us to answer RMQs on the LCP array using only a stack [GO11].
Last, we compute the LCP values of suffixes at the border of buckets, as those values
cannot be induced.
Recall that the LCP value of two arbitrary suffixes T [i..n) and T [j..n) is denoted

by lcp(i, j). We need the following additional definition: Given an array A of length
` and 0 ≤ i ≤ j ≤ `, a range minimum query RMQA[i, j] asks for the minimum in
A[i, j], in symbols: RMQA[i, j] = min {A[k] : i ≤ k ≤ j}.

4.3.1 Computing the LCP Values of the C+.-Suffixes
After the sorting of the C+.-suffixes (right before the C+.-suffixes are placed at their
correct position in SA[0..n)), all C+.-suffixes are lexicographically sorted in SA[0..m).
There are two cases regarding m (the number of C+.-suffixes). If m > n/3, we have
overwritten the text positions of the C+.-suffixes in PAb with ISAb. In this case we
must compute the LCP values naively. For all tested instances (see Section 4.4) we
have m ≤ n/3. Otherwise (we still know the text positions of all C+.-suffixes), we
compute their LCP values using a sparse version of the Φ-algorithm [Kär+09], based
on Observation 4.2, which was also used implicitly in [Bin+16a; Fis11].

Observation 4.2. If T [i..n), T [i′..n), T [j..n) and T [j′..n) are C+.-suffixes such that
i < i′, j < j′ and there is no other C+.-suffix T [k..n) such that i < k < i′ or j < k < j′,
then lcp(i′, j′) ≥ lcp(i, j)− (i′ − i).

We can compute this lower bound for the LCP value as we know the distance (in
the text) of two C+.-suffixes, i. e., PAb[i] − PAb[j] is the distance of the i-th and
j-th C+.-suffix with 1 ≤ i ≤ j ≤ m. See Figure 4.14 for an example. Algorithm 4.1
shows the sparse version of the Φ-algorithm. The difference to the original algorithm
[Kär+09] is that the next considered suffix is an arbitrary number of character shorter

109

CHAPTER 4 AN EXCURSION TO SUFFIX SORTING IN MAIN MEMORY

Algorithm 4.1. Sparse Φ-Algorithm
Input :T , m, SA, ISAb = SA[m..2m− 1], PAb = SA[n−m..n− 1] and LCP,

PHI = LCP[m..2m− 1] PHI = DELTA[n−m..n− 1].
Output : LCP[0..m− 1] contains the LCP values of the C+.-suffixes.

1 PHI[SA[0]] = −1
2 for i = 1; i ≤ m− 1; i = i+ 1 do
3 PHI[SA[i]] = SA[i− 1]
4 DELTA[i− 1] = PAb[i]− PAb[i+ 1]
5 for i = 0, p = 0; i < m; i = i+ 1 do
6 while T [PAb[i] + p+ 1] = T [PAb[PHI[i]] + p+ 1] do
7 p = p+ 1
8 PHI[i] = p and p = max {0, p− DELTA[i]}
9 for i = 0; i < m; i = j + 1 do LCP[ISAb[i]] = PHI[i];

than the previous one, which is handled by Observation 4.2. The computation of the
LCP values does not require any additional memory except for the n words for LCP,
where we temporarily store additional data.

First (lines 1 to 4 of Algorithm 4.1), we fill PHI (stored in LCP[m..2m)) such that
PHI[i] contains the text position of the suffix that is lexicographically consecutive to
the i-th suffix (text position). In DELTA[i] (stored in LCP[n−m..n)) we store the text
distance of the i-th and (i+1)-th C+.-suffix (text occurrence), i. e., PAb[i+1]−PAb[i].
Then (lines 5 to 8), we compute the sparse LCP array using Observation 4.2. As we
store the LCP values in PHI in text order, we need to rewrite them to LCP (line 9).

4.3.2 Inducing LCP Values in Addition to the Suffix Array
During the inducing of the C+-suffixes (see Section 4.2.3), whenever a suffix is induced
at position u in SA and there is already a suffix at position u+ 1 in the same (α, β)-
bucket, there are two cases:

1. The suffixes T [SA[u]..n) and T [SA[u+ 1]..n) have been induced from suffixes
T [SA[v]..n), T [SA[w]..n) in the same (α, β)-bucket; in this case LCP[u + 1] =
RMQLCP[v + 1, w] + 1.

2. Otherwise, the LCP value is either 2 if and only if T [SA[v]..n), T [SA[w]..n) are
in the same α-bucket and 1 if not.

The computation of the LCP values during the inducing of the C−-suffixes works
analogously. This leads to the following observation for the general case:

Observation 4.3. Let SA[u] = i,SA[u+ 1] = j,SA[v] = i+ 1 and SA[w] = j + 1 such
that T [i..n) and T [j..n) are in the same α-bucket, and u + 1 < v and u + 1 < w or
w < u and v < u. Then LCP[u+ 1] = RMQLCP[min {v, w}+ 1,max {v, w}] + 1.

Unfortunately, not all LCP values can be induced this way. The missing cases are
covered in Section 4.3.3. Instead of using a dynamic RMQ data structure, we can

110

4.3 INDUCING THE LCP ARRAY

i 0 1 2 3 4 5 6

A[i] 4 2 0 1 4 3 2

(a) An example array for our min-stack.

〈4, 4〉
〈5, 3〉 〈5, 3〉 〈1, 2〉 〈1, 2〉

〈6, 2〉 〈6, 2〉 〈6, 2〉 〈3, 1〉 〈2, 0〉 〈2, 0〉 〈2, 0〉
〈∞,−1〉 〈∞,−1〉 〈∞,−1〉 〈∞,−1〉 〈∞,−1〉 〈∞,−1〉 〈∞,−1〉

i 6 5 4 3 2 1 0

(b) The min stack while scanning array A from right to left.

Figure 4.15. The min-stack for each current position i (b) while scanning A (a) from
right to left. A tuple (p, v) contains the position p of the value v. For the current
position i the stack can be used to answer RMQs of the type RMQA[i, j] with j ≥ i
by looking at elements from the top until a position k with k ≥ j is found.

answer the RMQs using a min-stack [Bin+16a; Fis11; GO11]. See also Figure 4.15 for
an example. We only need to consider RMQs for suffixes from the same (α, β)-bucket.
To this end, we build the min-stack while scanning an interval [first, last] (from right
to left) of the LCP array. An entry on the min-stack is a tuple 〈k, LCP[k]〉. Initially,
the tuple 〈−∞,−1〉 is pushed on the min-stack. To update the min-stack at position
i ∈ [first, last], we look at the top of the min-stack and pop the tuple 〈k, LCP[k]〉 if
LCP[k] ≥ LCP[i]. We repeat this process until no tuple is popped. Then we push
〈i, LCP[i]〉 to the min-stack.
Now we want to answer RMQLCP[i, j] with first ≤ i < j ≤ last. (It should be noted

that at this point we have not pushed 〈i, LCP[i]〉 to the min-stack or have popped
any tuple from the min-stack in the process of adding it to the min-stack.) To this
end, we scan the min-stack from top to bottom, until we find two consecutive tuples
〈k, LCP[k]〉, 〈k′, LCP[k′]〉 such that k′ > j. Then, RMQLCP[i, j] = LCP[k]. If we scan
the text from left to right, the min-stack works analogously. The only difference is
that the initial tuple is 〈−1,−1〉 and we search for the two consecutive tuples until
k′ < j

The min-stack is cleared whenever we arrive at a new (α, β)-bucket, i. e., we only
keep the 〈n,−1〉-tuple. In the implementation, the min-stack is realized using a single
array and a reference to its current top. In addition to the min-stack, we require for
each α-bucket the position of where the last suffix has been induced from. This is the
position we look for when querying the min-stack.

111

CHAPTER 4 AN EXCURSION TO SUFFIX SORTING IN MAIN MEMORY

4.3.3 Special Cases during LCP Induction
There are three special cases ((SC1)–(SC3)) where the LCP value cannot be induced
using the min-stack (or RMQs in general).

(SC1) The first case occurs if a suffix is induced next to a C+.-suffix in the suffix
array. The inducing can happen to the left or right of the already placed C+.-
suffix. The former case is easy, as there cannot be a C−- or C+-suffix to the
left of a C+.-suffix in the same (α, β)-bucket. Therefore, we only need to check
whether the suffixes are in the same α-bucket to compute the LCP value for the
C+.-suffix, which is either 0 or 1.

(SC2) The second case (a suffix is induced to the right of a C+.-suffix) is more
demanding, as the LCP value must be computed. First, we check whether
both the C+.-suffix T [i..n) and the C+-suffix T [j..n) are in the same (α, β)-
bucket. If not, the LCP value is 1 if they occur in the same α-bucket, and 0
otherwise. However, if they occur in the same (α, β)-bucket, we know that
T [i..n) has a prefix αβγ, γ ∈ Σ, such that α < β ≥ γ, and that T [j..n)
has a prefix αβδ, δ ∈ Σ, such that α < β ≤ δ. Hence, the LCP value is
max {k ≥ 0: T [i+ 1..i+ k + 2) = T [j + 1..j + k + 2)}+ 1, i. e., the first appear-
ance of a character not equal to β in either suffix.

(SC3) In the last case, an C−-suffix is induced next to a C+-suffix, the LCP value can
be determined in an analogous way to the second case.

Therefore, we can solve the first case (SC1) without comparing suffixes at all. For the
second case (SC2) and third case (SC3), we have to scan the suffixes until we see a
new character.

4.4 EXPERIMENTAL EVALUATION
We extended DivSufSort to compute the LCP array as described above and denote
it by DivSufSort-LCP. The source code is available at www.kurpicz.org/lcp. As
before, we use LiDO.small nodes to run the experiments. The code was compiled
using GCC 9.2.0 with flags -O3 and -march=native. For inputs we use prefixes of
the texts described in Section 1.4.2 in addition to Pizza & Chili corpus, which we
described in Section 4.1. We compare our implementation with the following LCP
construction algorithms.
SAIS-LCP [Fis11] is an LCP array construction algorithm based on SAIS [Mor08;

Non+11] and is similar to the algorithm we described in this section, with the
main difference being the underlying induced copying suffix sorting algorithm. As
SAIS is a linear running time algorithm, this LCP array construction algorithm
has O(n) running time.

KLAAP [Kas+01] is a linear time LCP array construction algorithm that uses the
fact that if an LCP value k exists in the LCP array, then the LCP value k − 1

112

www.kurpicz.org/lcp

4.4 EXPERIMENTAL EVALUATION

also has to exist to save text comparisons. To be more precise, if LCP[i] =
lcp(SA[i− 1],SA[i]) = k and k > 0, then lcp(SA[i− 1] + 1,SA[i] + 1) = k − 1.
However, we do not know if SA[i− 1] + 1 and SA[i] + 1 are consecutive entries in
the suffix array. But we know that the corresponding LCP value will be at least
k−1 (if SA[i−1]+1 and SA[i]+1 are consecutive entries). The inverse suffix array
is used to identify the required text positions in constant time. We implemented
this algorithm for the following experiments. The KLAAP algorithm is also
implemented as part of the SDSL. We denote the implementation contained in
the SDSL by KLAAP (SDSL).

Φ-algorithm [Kär+09] is a practical improvement of Kasai et al.’s [Kas+01] KLAAP
algorithm that computes the permuted LCP (PLCP) array instead, i. e., the
LCP array in text order. Therefore, the LCP array has to be computed from
the PCLP array. Nevertheless, the different order the LCP array is initially
constructed in allows to reduce the number of cache misses (by up to one per
entry of the LCP array) and speeds up the algorithm in practice, as we see in
the experimental evaluation. Like the KLAAP algorithm, we implemented this
algorithm for the following experiments. The Φ-algorithm, too, is implemented
in the SDSL, we denote this algorithm by Φ-algorithm (SDSL).

SE-Φ-algorithm is a semi-external memory variant of the Φ-algorithms, which is part
of the SDSL. It should be noted that the SDSL does not necessarily write to
external memory. The data is often cached and for smaller inputs (fitting into
main memory) kept in main memory.

GO and GO2 [GO11] are two variants of an algorithms with O(n2) running time that
are, however, fast in practice. This is due to the authors’ observation that (in
their experiments) one cache miss takes as long as the comparison of 20 characters.
Both algorithms require the Burrows-Wheeler transform (BWT) [BW94], which
can be computed in linear time given the suffix array and is a permutation of
the input.

BWT and BWT2 are two LCP array construction algorithms that are also based
on the BWT. They are part of the SDSL and, as far as the author known, not
described in any publication.

Running Time and Memory Requirements
In Tables 4.2 and 4.3 we report the throughput of the LCP array construction al-
gorithms. On all but four inputs (DNA (1024MiB), Prot (1024MiB), english, and
proteins) DivSufSort-LCP is the fastest LCP array construction algorithm. However,
it should be noted that here it is only slightly faster than the Φ-algorithm—the fastest
LCP array construction algorithm on all other inputs.
Yet, DivSufSort-LCP is most often the fastest LCP array construction algorithm

based on induced copying. It is faster than SAIS-LCP on all inputs but CommonCrawl,
influenza, and kernel.

113

CHAPTER 4 AN EXCURSION TO SUFFIX SORTING IN MAIN MEMORY

The memory requirements of all LCP array construction algorithms are listed in
Tables 4.4 and 4.5. There, we see that the algorithms implemented in the SDSL
are the most memory efficient ones, requiring only 7 bytes per character of the text.
However, this is due to the design of the SDSL, all algorithms behave like semi-external
memory (Section 1.3.4) algorithms, but the data is still kept in main memory if the
RAM is large enough, which is the case for all tested inputs. If this is the case, the
algorithms in the SDSL are the most memory efficient ones. Hence, algorithms based
on induced copying require 7 bytes per character of the text, making DivSufSort-LCP
the ideal combination of speed and memory requirements, because the Φ-algorithm
need 13 bytes per character of the text.

4.5 CONCLUSION AND FUTURE WORK
In this chapter, we tested if DivSufSort is, as generally assumed, the fastest main
memory suffix sorting algorithm. However, very much to our surprise, there exist inputs
on which this is not true and SAIS is faster. We identified that those inputs are (highly)
repetitive, i. e., inputs where a some substrings occur a lot. This is due to the different
techniques used for lexicographically sorting the special suffixes that are needed to
induce the lexicographical order of all other suffixes. Here, the recursive approach
employed by SAIS resolves the repetitive substrings better than the doubling approach
used by DivSufSort. Still, it remains true—and is now experimentally proven—that
DivSufSort is in general the fastest main memory suffix sorting algorithm.

We then looked at LCP array construction algorithms, as the LCP array often
accompanies the suffix array. Here, the Φ-algorithm is the fastest on most inputs, but
it also requires the most memory. LCP array construction based on induced copying,
however, has a good trade-off between running time and memory requirements. As
DivSufSort-LCP is only slightly slower than the Φ-algorithm but requires only 69%
of its memory.

Future Work. While in-place suffix sorting in main memory has been solved by Goto
[Got17] and Li et al. [Li+18], there are still open questions regarding main memory
suffix sorting in practice: (i) Is there a linear time suffix sorting algorithm faster than
DivSufSort on all inputs? (ii) Are the theoretical optimal suffix sorting algorithms
by Goto [Got17] and Li et al. [Li+18] practical? (iii) Baier [Bai16] has provided a
new technique for main memory suffix sorting, are there further ways to compute the
suffix array in linear time, or can we just improve the existing ones? In conclusion,
the question is can we be faster? The same holds for the LCP array construction.

114

4.5 CONCLUSION AND FUTURE WORK

Ta
bl
e
4.
2.

T
hr
ou

gh
pu

t
in

M
iB

pe
r
se
co
nd

s
of

LC
P

ar
ra
y
co
ns
tr
uc

tio
n
al
go

rit
hm

s.
A
ll
al
go

rit
hm

s
re
qu

iri
ng

th
e
su
ffi
x

ar
ra
y
as

in
pu

t
co
m
pu

te
it

us
in
g
D
iv
Su

fS
or
t.

T
he

su
ffi
x
ar
ra
y’
s
co
ns
tr
uc

tio
n
tim

e
is

in
cl
ud

ed
.
If

th
e
BW

T
is

re
qu

ire
d
fo
r

th
e
co
ns
tr
uc

tio
n,

its
co
ns
tr
uc

tio
n
tim

e
is

in
cl
ud

ed
,t
oo

,a
nd

th
e
BW

T
is

co
m
pu

te
d
us
in
g
th
e
su
ffi
x
ar
ra
y.

te
xt

DivSufSort-LCP

SAIS-LCP

KLAAP

Φ-algorithm

KLAAP(SDSL)

Φ-algorithm(SDSL)

SE-Φ-algorithm

GO

GO2

BWT

BWT2

256MiB

Co
mm

on
Cr

aw
l

1.
54

4.
00

4.
95

5.
29

3.
46

3.
31

1.
68

1.
61

DN
A

4.
29

3.
22

4.
24

4.
60

2.
99

3.
21

2.
89

3.
00

3.
20

2.
88

2.
66

Pr
ot

3.
91

3.
05

4.
03

4.
27

2.
75

3.
34

3.
33

2.
78

2.
95

1.
51

1.
64

Wi
ki

4.
91

3.
48

4.
63

5.
00

3.
10

3.
58

3.
34

3.
29

3.
34

1.
99

512MiB

Co
mm

on
Cr

aw
l

1.
38

3.
15

4.
32

5.
01

3.
20

3.
07

2.
95

1.
58

1.
52

DN
A

4.
06

2.
54

3.
68

4.
36

2.
64

2.
93

2.
60

2.
88

3.
04

2.
82

2.
60

Pr
ot

3.
40

2.
64

3.
55

3.
85

2.
55

2.
70

2.
76

2.
67

2.
58

1.
58

1.
57

Wi
ki

4.
00

3.
27

4.
29

4.
70

2.
88

3.
40

2.
93

3.
08

2.
91

2.
06

2.
00

1024MiB

Co
mm

on
Cr

aw
l

1.
21

3.
43

4.
29

4.
40

2.
71

2.
94

2.
73

1.
30

1.
37

DN
A

3.
86

2.
39

3.
46

3.
83

2.
34

2.
96

2.
34

2.
98

2.
99

2.
60

2.
53

Pr
ot

3.
61

2.
39

2.
88

3.
60

2.
28

2.
50

2.
51

2.
37

2.
41

1.
61

1.
51

Wi
ki

4.
36

2.
50

3.
88

4.
42

2.
43

2.
98

2.
88

3.
01

2.
97

1.
98

1.
87

115

CHAPTER 4 AN EXCURSION TO SUFFIX SORTING IN MAIN MEMORY

Ta
bl
e
4.
3.

T
hr
ou

gh
pu

ti
n
M
iB

pe
rs

ec
on

ds
of

LC
P
ar
ra
y
co
ns
tr
uc
tio

n
al
go
rit

hm
s(

co
nt
in
ua

tio
n)
.A

ll
al
go
rit

hm
sr

eq
ui
rin

g
th
e
su
ffi
x
ar
ra
y
as

in
pu

t
co
m
pu

te
it

us
in
g
D
iv
Su

fS
or
t.

T
he

su
ffi
x
ar
ra
y’
s
co
ns
tr
uc

tio
n
tim

e
is

in
cl
ud

ed
.
If

th
e
B
W

T
is

re
qu

ire
d
fo
r
th
e
co
ns
tr
uc

tio
n,

its
co
ns
tr
uc

tio
n
tim

e
is

in
cl
ud

ed
,t
oo

,a
nd

th
e
BW

T
is

co
m
pu

te
d
us
in
g
th
e
su
ffi
x
ar
ra
y.

te
xt

DivSufSort-LCP

SAIS-LCP

KLAAP

Φ-algorithm

KLAAP(SDSL)

Φ-algorithm(SDSL)

SE-Φ-algorithm

GO

GO2

BWT

BWT2

db
lp
.x
m
l

6.
13

3.
99

5.
98

6.
31

3.
98

4.
56

3.
82

4.
01

3.
79

2.
55

2.
41

dn
a

3.
71

3.
14

3.
94

4.
25

2.
64

3.
21

2.
65

3.
12

3.
09

2.
72

2.
46

en
gl
ish

4.
43

3.
12

4.
20

4.
12

2.
94

3.
37

3.
02

2.
63

2.
73

1.
58

1.
68

pr
ot
ei
ns

4.
39

3.
08

4.
07

4.
33

2.
83

3.
41

3.
00

2.
49

2.
57

1.
57

1.
64

so
ur
ce
s

6.
47

4.
94

6.
15

6.
53

4.
18

4.
56

4.
08

3.
87

4.
00

1.
93

1.
97

Es
ch
er
ich

ia
_
C
ol
i

5.
0

4.
4

5.
1

5.
5

3.
5

4.
1

3.
7

3.
6

2.
5

1.
8

2.
0

ce
re

4.
8

4.
3

5.
1

5.
6

3.
6

4.
0

3.
6

3.
6

2.
2

1.
5

1.
8

co
re
ut
ils

6.
2

5.
8

6.
0

6.
6

4.
1

4.
6

4.
6

4.
0

2.
6

0.
8

1.
1

ei
ns
te
in
.d
e.
tx
t

5.
9

5.
2

6.
3

6.
7

4.
3

4.
7

5.
1

3.
9

2.
3

0.
6

1.
2

ei
ns
te
in
.e
n.
tx
t

5.
0

4.
6

5.
4

5.
8

3.
9

4.
0

4.
1

3.
6

1.
9

0.
5

1.
1

in
flu

en
za

4.
6

5.
2

5.
7

6.
2

3.
9

4.
3

3.
6

3.
9

2.
6

2.
1

2.
1

ke
rn
el

5.
3

5.
5

5.
9

6.
5

3.
9

4.
2

4.
7

4.
0

2.
3

0.
3

1.
1

pa
ra

4.
7

4.
2

5.
0

5.
4

3.
2

3.
8

3.
4

3.
4

2.
1

1.
3

1.
8

wo
rld

_
le
ad

er
s

10
.8

8.
4

9.
7

11
.4

5.
8

7.
3

7.
4

6.
1

3.
7

2.
0

2.
4

116

4.5 CONCLUSION AND FUTURE WORK

Ta
bl
e
4.
4.

M
em

or
y
pe

ak
in

by
te

pe
r
ch
ar
ac
te
r
of

th
e
in
pu

t
of

th
e
LC

P
ar
ra
y
co
ns
tr
uc

tio
n
al
go

rit
hm

s.
A
ll
al
go

rit
hm

s
re
qu

iri
ng

th
e
su
ffi
x
ar
ra
y
as

in
pu

t
co
m
pu

te
it
us
in
g
D
iv
Su

fS
or
t,
w
hi
ch

re
qu

ire
s
4b

yt
es

pe
r
ch
ar
ac
te
r
of

th
e
in
pu

t.

te
xt

DivSufSort-LCP

SAIS-LCP

KLAAP

Φ-algorithm

KLAAP(SDSL)

Φ-algorithm(SDSL)

SE-Φ-algorithm

GO

GO2

BWT

BWT2

256MiB

Co
mm

on
Cr

aw
l

9.
01

9.
01

13
.0
1

13
.0
1

10
.0
1

7.
02

7.
04

7.
01

DN
A

9.
01

9.
01

13
.0
1

13
.0
1

10
.0
1

7.
01

7.
01

7.
01

7.
05

7.
09

7.
09

Pr
ot

9.
01

9.
01

13
.0
1

13
.0
1

10
.0
1

7.
01

7.
01

7.
03

7.
05

7.
05

7.
01

Wi
ki

9.
01

9.
01

13
.0
1

13
.0
1

10
.0
1

7.
01

7.
01

7.
03

7.
02

7.
01

512MiB

Co
mm

on
Cr

aw
l

9.
00

9.
00

13
.0
0

13
.0
0

10
.0
1

7.
01

7.
04

7.
06

7.
01

DN
A

9.
00

9.
00

13
.0
0

13
.0
0

10
.0
1

7.
00

7.
00

7.
01

7.
04

7.
01

7.
01

Pr
ot

9.
00

9.
00

13
.0
0

13
.0
0

10
.0
1

7.
00

7.
00

7.
01

7.
04

7.
01

7.
01

Wi
ki

9.
00

9.
00

13
.0
0

13
.0
0

10
.0
1

7.
00

7.
00

7.
01

7.
01

7.
05

7.
01

1024MiB

Co
mm

on
Cr

aw
l

9.
00

9.
00

13
.0
0

13
.0
0

10
.0
0

7.
01

7.
00

7.
00

7.
00

DN
A

9.
00

9.
00

13
.0
0

13
.0
0

10
.0
0

7.
00

7.
00

7.
00

7.
00

7.
00

7.
00

Pr
ot

9.
00

9.
00

13
.0
0

13
.0
0

10
.0
0

7.
00

7.
00

7.
01

7.
00

7.
00

7.
00

Wi
ki

9.
00

9.
00

13
.0
0

13
.0
0

10
.0
0

7.
00

7.
00

7.
05

7.
01

7.
00

7.
00

117

CHAPTER 4 AN EXCURSION TO SUFFIX SORTING IN MAIN MEMORY

Ta
bl
e
4.
5.

M
em

or
y
pe

ak
in

M
iB

pe
rc

ha
ra
ct
er

of
th
e
in
pu

to
ft

he
LC

P
ar
ra
y
co
ns
tr
uc

tio
n
al
go
rit

hm
s(

co
nt
in
ua

tio
n)
.
A
ll

al
go

rit
hm

s
re
qu

iri
ng

th
e
su
ffi
x
ar
ra
y
as

in
pu

t
co
m
pu

te
it

us
in
g
D
iv
Su

fS
or
t,

w
hi
ch

re
qu

ire
s
4b

yt
es

pe
r
ch
ar
ac
te
r
of

th
e

in
pu

t.

te
xt

DivSufSort-LCP

SAIS-LCP

KLAAP

Φ-algorithm

KLAAP(SDSL)

Φ-algorithm(SDSL)

SE-Φ-algorithm

GO

GO2

BWT

BWT2

db
lp
.x
m
l

9.
01

9.
01

13
.0
1

13
.0
1

10
.0
1

7.
01

7.
01

7.
01

7.
05

7.
05

7.
01

dn
a

9.
01

9.
01

13
.0
1

13
.0
1

10
.0
1

7.
01

7.
01

7.
02

7.
03

7.
12

7.
09

en
gl
ish

9.
01

9.
01

13
.0
1

13
.0
1

10
.0
1

7.
01

7.
01

7.
02

7.
05

7.
06

7.
01

pr
ot
ei
ns

9.
01

9.
01

13
.0
1

13
.0
1

10
.0
1

7.
01

7.
01

7.
02

7.
05

7.
05

7.
01

so
ur
ce
s

9.
01

9.
01

13
.0
1

13
.0
1

10
.0
1

7.
01

7.
18

7.
18

7.
19

7.
19

7.
16

Es
ch
er
ich

ia
_
C
ol
i

9.
02

9.
02

13
.0
2

13
.0
2

10
.0
3

7.
03

7.
22

7.
03

7.
21

7.
39

7.
39

ce
re

9.
01

9.
01

13
.0
1

13
.0
1

10
.0
1

7.
01

7.
01

7.
01

7.
80

7.
15

7.
10

co
re
ut
ils

9.
01

9.
01

13
.0
1

13
.0
1

10
.0
2

7.
02

7.
18

7.
02

7.
86

7.
21

7.
15

ei
ns
te
in
.d
e.
tx
t

9.
02

9.
02

13
.0
2

13
.0
2

10
.0
3

7.
03

7.
24

7.
03

8.
90

7.
03

7.
33

ei
ns
te
in
.e
n.
tx
t

9.
01

9.
01

13
.0
1

13
.0
1

10
.0
1

7.
01

7.
01

7.
01

9.
13

7.
01

7.
01

in
flu

en
za

9.
01

9.
01

13
.0
1

13
.0
1

10
.0
2

7.
02

7.
20

7.
02

7.
20

7.
03

7.
23

ke
rn
el

9.
01

9.
01

13
.0
1

13
.0
1

10
.0
1

7.
01

7.
17

7.
01

8.
79

7.
21

7.
15

pa
ra

9.
01

9.
01

13
.0
1

13
.0
1

10
.0
1

7.
01

7.
01

7.
01

7.
70

7.
05

7.
10

wo
rld

_
le
ad

er
s

9.
04

9.
04

13
.0
4

13
.0
4

10
.0
7

7.
07

7.
05

7.
07

7.
65

7.
14

7.
09

118

CHAPTER 5

DISTRIBUTED SUFFIX
ARRAY CONSTRUCTION

In this chapter, we focus on distributed memory suffix array construction, which is
a field where less work has been conducted than for main memory. Previously, in
Section 4.1, we described different approaches to compute the suffix array, namely:
prefix doubling, induced copying, and recursion. Now, we adapt these approaches to
distributed memory. First, in Sections 5.2 and 5.3, we present algorithms based on
prefix doubling and recursion. Then, in Section 5.4, we also present the first distributed
induced copying suffix array construction algorithm, which is a distributed variant of
DivSufSort (which we thoroughly described in Section 4.2). Finally, in Section 5.6, we
present the extensive experimental results of our distributed suffix array construction.

Now, before we delve into suffix sorting in distributed memory, we briefly men-
tion suffix array construction algorithms in other models of computation, which we
described in Section 1.3. In shared memory, there exists a parallel version of the
recursive DC3 algorithm [KS03], a parallel implementation of DivSufSort [Lab+17],
SACA-K [Lao+18a], and SAIS [Lao+18b]. Similar to shared memory, the GPU
(graphics processing unit) can be used to execute algorithms in parallel. However,
implementing a scalable GPU algorithm has more restrictions than shared memory
algorithms, which are not relevant for this dissertation as we only list the algorithms
for completeness. The following suffix array construction algorithms are designed to
be run on the GPU: [Bah+19b], [DK13], [Osi12], [SM09], and [Wan+16]. However,
all of these GPU-algorithms except the one by Bahne et al. [Bah+19b] have either
no publicly available implementation or provide an implementation that does not
compute a correct suffix array for all inputs. In external memory, induced copying
algorithms by Bingmann et al. [Bin+16a], Kärkkäinen et al. [Kär+17], and Nong et al.
[Non+15], which are based on the linear time recursive and induced copying hybrid
SAIS [Mor08; Non+11] and minor parts of DivSufSort [Mor06] (see also Section 4.2)
are the fastest algorithms. There also are external memory suffix array construction
algorithms based on prefix doubling [Dem+08a], recursion [KS03], and an external
memory algorithm that computes partial suffix arrays and merges them [KK17] that
also has a parallel (still external memory) version by Kärkkäinen et al. [Kär+15].

119

CHAPTER 5 DISTRIBUTED SUFFIX ARRAY CONSTRUCTION

Overview of Distributed Suffix Array Construction Algorithms. Unlike for main
memory, the list of distributed suffix array construction algorithms is relatively short.
Kärkkäinen and Sanders [KS03] show that their linear time suffix array construction
algorithm can be distributed, which only seems natural, as it is mostly based on sort-
ing and merging. This results in BSP costs of O((1 +G/ lg(n/p))n lgn/p+ lg2 pL),
where p is the number of processing elements. There also exists a practical evaluation
of this algorithm [KS07] and an independently developed publicly available implemen-
tation [Bin12], which only exists as code but has not been published anywhere. We
use the latter in our experiments in Section 5.6.
Next, Navarro et al. [Nav+97] present a distributed algorithm that is very similar

to the domain decomposition approach we use for wavelet tree construction in Sec-
tion 3.3.3. Initially, each processing element computes the suffix array for its local
slice of the text, before those slices are merged. Obviously, the merging of suffix arrays
is more complex than merging the partial wavelet trees.
Futamura et al.’s [Fut+01] distributed suffix array construction algorithm works

similar to Navarro et al.’s [Nav+97]. They use a more complex scheme to distribute
the suffixes which makes it more complex to efficiently compute the local suffix arrays.
However, the benefit of this approach is that the merging becomes easier.
The algorithms by Futamura et al. [Fut+01] and Kulla and Sanders [KS07] were

compared in a small survey by Metwally et al. [Met+16]. There the authors re-
implemented the algorithms. Yet, their implementations do not work well for larger
inputs as they have huge memory requirements and are very slow (even on small
inputs). Futamura et al.’s [Fut+01] algorithm was also reimplemented by Abdelhadi
et al. [Abd+14]. This implementation also suffers from huge memory requirements
and a very slow running time, which we comment on in our experiments in Section 5.6.
Finally, there is a distributed suffix array construction algorithm based on prefix

doubling by Flick and Aluru [FA15]. We highlight this algorithm, as it has a publicly
available implementation that works well even for larger inputs and is our main com-
petitor in our evaluation in Section 5.6. We explain the concept of prefix doubling
in general and the specifics of distributed prefix doubling in detail in Section 5.2.
There, we also describe Flick and Aluru’s [FA15] distributed prefix doubling suffix
array construction algorithm in more detail.

5.1 PRELIMINARIES
The processing elements that are used to run distributed algorithms have to commu-
nicate. To this end, we make use of two different frameworks: the message passing
interface (MPI) and a distributed batch processing framework (Thrill), which we
describe in more detail in Sections 5.1.1 and 5.1.2. The main difference between
these two approaches is that MPI allows us to directly send and recieve any data
from any processing element to another processing element, whereas Thrill stores all
data distributed over all processing elements without the user knowing of the specific
location and allows access only via predefined functions.

120

5.1 PRELIMINARIES

5.1.1 MPI: The Message Passing Interface
The message passing interface (MPI, see www.mpi-forum.org) describes a standard for
message passing in parallel algorithms. MPI can be used to implement parallel shared
memory algorithms but is mostly used to implement parallel distributed memory
algorithms. There exist multiple implementations of the standard, e. g., OpenMPI
and MPICH. In the following, we briefly introduce MPI, which helps us understand
the following algorithms but is by no means a complete description of MPI.

Point-to-Point Communication. The most basic operation provided by MPI is send-
ing and receiving data. Most of the functionality provided by MPI is sending and
receiving data in more or less complex ways. In this context, point-to-point com-
munication means that one processing element i sends data and another processing
element j receives the data send by processing element i.

Collective Communication. Collective communication provides more advanced ways
to communicate data. For example, we can broadcast data from one processing element
to all others. Obviously, this can be realized by sending and receiving data point-to-
point, however, using collective communication can be faster due to more sophisticated
algorithms provided by MPI. More complex examples are scan (prefix sum), scatter
(one processing element sends data to all other processing elements, which can be
different for each receiving processing element), gather (one processing element receives
data from all other processing elements), or reduce (like gather, but an operation is
applied to all data, e. g., summing up all data or choosing the maximum).

One-Sided Communication. One-sided communication is also known as remote di-
rect memory access (RDMA). In MPI, this allows us to directly access RAM on other
processing elements without having them send it. Still, synchronizations are necessary
and lots of random RDMA is slow in practice for that reason.

In general, MPI provides an interface that we use to write our distributed algorithms.
Most importantly, we can always access all data and send arbitrary data from one
processing element to another. This is the main difference between MPI and Thrill,
which is the framework that we describe below.

5.1.2 Thrill: A Distributed Big Data Batch Processing Framework
Thrill [Bin+16b] works with distributed immutable arrays (DIAs) storing data. Data
in DIAs cannot be accessed directly; instead there is a rich set of DIA operations
which can be used to transform DIAs. In the following, we give a list and describe
a subset of these operations, which are all the operations necessary to describe our
distributed suffix array construction algorithms that we implemented using Thrill.
For a complete overview of Thrill’s features, we refer to the dissertation of Bingmann
[Bin18, p. 233–268].

121

www.mpi-forum.org

CHAPTER 5 DISTRIBUTED SUFFIX ARRAY CONSTRUCTION

Filter(f) takes a DIA〈A〉 X and a function f : A→ bool, and returns the DIA〈A〉
containing [x ∈ X | f(x)] within which the order of items is maintained.

Map(f) applies the function f : A → B to each item in the input DIA〈A〉 X, and
returns a DIA〈B〉 Y with Y [i] = f(X[i]) for all i = 0, . . . , |X| − 1.

Windowk(w) and FlatWindowk(w′) take an input DIA〈A〉 X and a window func-
tion w : N0×Ak → B. The operation scans over X with a window of size k and
applies w once to each set of k consecutive items from X and their index in X.
The final k − 1 indexes with less than k consecutive items are delivered to w as
partial windows padded with sentinel values. The result of all invocations of w is
returned as a DIA〈B〉 containing |X| items in corresponding order. FlatWindow
is a variant of Window which takes a input DIA〈A〉 X and a window function
w′ : N0 ×Ak → list(B), that can emit zero or more items that are concatenated
in the resulting DIA〈B〉.

PrefixSum(s) takes an input DIA〈A〉 X and an associative operation s : A×A→ A
(by default s = +), and returns a DIA〈A〉 Y such that Y [0] = X[0] and Y [i] =
s(Y [i− 1], X[i]) for all i = 1, . . . , |X| − 1,

Sort(c) sorts an input DIA〈A〉 X with respect to a less-comparison function c : A×
A→ bool,

Merge(X1, . . . , Xn, c) merges a set of sorted DIA〈A〉s X1, . . . , Xn and a less-com-
parison function c : A × A → bool. The results is DIA〈A〉 Y that contains all
tuples of X1, . . . , Xn and is sorted with respect to c,

Zip(X1, . . . , Xn, f) takes a set of DIAs X1, . . . , Xn of type A1, . . . , An of equal size
(|X1| = · · · = |Xn|) and a function f : A1 × · · · ×An → B, and returns DIA〈B〉
Y with Y [i] = f(X1[i], . . . , Xn[i]) for all i = 0, . . . , |X1| − 1,

ZipWithIndex(f) takes an input DIA〈A〉 X and a function f : A×N0 → B. Then,
ZipWithIndex returns DIA〈B〉 Y with Y [i] = f(X[i], i) for all i = 0, . . . , |X|− 1,

ZipWindow[k1,...,kn]([X1, . . . , Xn], z) combines a Zip operation and a Window
operation: Given a list DIA〈A1〉X1, . . ., DIA〈An〉Xn, and a function z : N0 ×
Ak1

1 ×. . .×Aknn → B, ZipWindow returns DIA〈B〉 Y with Y [i] = z(i,X1[i, . . . , i+
k1], . . . , Xn[i, . . . , i+ kn]) for all i = 0, . . . , |X| − 1,

Max(c) takes an input DIA〈A〉 X, Max returns the maximum item m = maxcX
with respect to a less-comparison function c : A×A→ bool, and

Size() returns the number of items in X, i. e., |X|, give an input DIA〈A〉 X.

Method Chaining. Thrill applies chains of functions (method chaining) to a DIA,
e. g., if we have a DIA〈N0〉 N = {0, 1, 2, . . . , 9} and want to compute the prefix sum
of all odd elements, then we write N.Filter(a 7→ (a mod 2) = 1).PrefixSum(). We
make heavy use of this notation in our pseudo code listings.

122

5.2 DISTRIBUTED PREFIX DOUBLING

5.2 DISTRIBUTED PREFIX DOUBLING
In this section, we present prefix doubling algorithms for suffix sorting. Let us start
by reviewing their general idea. For better exposition of these ideas, we define the
h-order ≤h on strings as their lexicographic order limited to depth h: a|h and b|h are
the strings a or b truncated to h characters. Then a ≤h b if and only if a|h ≤ b|h. Other
comparison operators like a =h b and a <h b are defined accordingly. As previously,
let T be a text of length n over an alphabet of size σ. For h < n, the h-order of suffixes
of T may not be unique, e. g., with respect to ≤2, all suffixes starting with the same
two characters are considered equal; their order is not fixed.
A set of suffixes equal under =h is called an h-group and they all start with the

same h characters. A rank with respect to ≤h of the suffixes in an h-group is any
number greater than the total size of all h-groups containing lexicographically smaller
suffixes and smaller than any rank of an h-groups containing lexicographically larger
suffixes. A rank with respect to ≤h is also called a (lexicographic) h-name or h-rank.
We denote the partital suffix array that is sorted using the h-ranks of the suffixes SAh.
Note that SAh is only unique if all h-groups consist of a single suffix.
Since h doubles in each round, h ≥ n after dlgne rounds and thus prefix doubling

algorithms have worst case running time O(n lgn). To be more precise, the algorithm
terminates when SAh has no more unsorted h-groups and becomes the suffix array.
This already happens after dlg(maxlcp(T))e iterations, yielding O(n log(maxlcp(T)))
running time, where maxlcp(T) denotes the maximum value in T ’s LCP array.
The essential goal of a prefix doubling algorithm is to give each suffix a lexico-

graphic 2k-name in iteration k using information from iteration k − 1. Manber and
Myers [MM93] observed that one can compute a 2k-rank for the prefix T [i..i+ 2k)
of suffix T [i..n) using already computed 2k−1-ranks of the prefixes T [i..i+ 2k−1) and
T [i+ 2k−1..i+ 2k). Since this idea is of great importance for this section, we give a
detailed explanation of it in the following.
The main idea to bringing this to distributed memory is to store and sort tuples

(i, ri) containing the rank ri of the i-th suffix. During each iteration k, this rank
should be the rank of the truncated suffix T [i..n)|2k , i. e., T [i..i+ 2k).

PD1 First, we have to compute the rank of each length-1 prefix, which is the rank of
the character and given by the alphabet. To this end, we associate each index
with a rank. During the first iteration, this rank is the rank of the character T [i]
among all characters occurring in T . Thus we creating rank-tuples (i, T [i]) for
all i ∈ [0, n). Also, we start counting the number of iterations; we let be k = 0.

Having these rank-tuples, we first check if we already have computed the suffix array.
We conduct this check during each iteration.

PD2 Whenever we compute new ranks for the suffixes, we have to check if all ranks
are unique. If they are, we have all information we need to compute the suffix
array SA. We can compute the suffix array by sorting the tuples by the second
component. Then, the first component corresponds to the SA. Otherwise (if not
all ranks are unique), we continue.

123

CHAPTER 5 DISTRIBUTED SUFFIX ARRAY CONSTRUCTION

Now, we want to compute the new ranks using the old ones (unless we have already
sorted all suffixes).

PD3 Construct rank-triples (i, r, r′), where (i, r) is the previously considered rank-
tuple and r′ is the rank of the tuple with index i+ 2k (or 0 if i+ 2k ≥ n). Here,
we change from the 2k-order to the 2k+1-order by combining the ranks.

Computing triples (i, ri, ri+2k−1) in iteration k is not a totally new idea. This approach
to generate new names has already proven to work well in external memory [Dem+08a].

PD4 Next, we sort the rank-triples by (r, r′) and compute new rank-tuples (i, rnew).
Using two such triples one can take the step from 2k−1-ranks to 2k-ranks: con-
sider (i, ri, ri+2k−1) and (j, rj , rj+2k−1) with ri = rj . This means that suffixes i
and j start with the same 2k−1 characters, T [i..n) =(2k−1) T [j..n). By comparing
ri+2k−1 and rj+2k−1 , we can determine the lexicographic order of the next 2k−1

characters, and hence compute new ranks. Then, increase k by one and continue
with Step PD2.

Most notably, we do not recompute all ranks during each iteration by comparing the
prefixes, but use the ranks from the previous iteration, i. e., we use the 2k-groups to
compute the 2k+1-groups without further text access.

5.2.1 Prefix Doubling in Thrill
Since the canonical prefix doubling algorithm that we describe above only requires
scanning and sorting arrays, we can easily implement it using Thrill. In this section,
we describe two different approaches (one is based in the inverse suffix array and the
other one is based on sorting) for obtaining the triples that are necessary to compute
the new ranks given the limitations of Thrill. Then, we show how we can significantly
improve the sorting variant by discarding already sorted suffixes. In addition to the
doubling algorithms, we also implemented quadrupling algorithms that have the same
general idea but quadruple the length of the considered suffixes by employing four
ranks instead of two to generate the new ranks.
Algorithm 5.1 describes the basic structure of the prefix doubling algorithms in

Thrill presented in this section. The whole algorithm requires one DIA N storing
pairs and one DIA S storing triples. For the first iteration, S contains the triples
(i, T [i], T [i+ 1]) for all i ∈ [0, n) (line 1). These triples contain a text position and the
rank-tuple for that position, i. e, the two ranks that are required to compute the new
rank for the suffix starting at the text position. For bootstrapping the first iteration
k = 1, we can simply use the characters as 1-ranks.
In our actual implementation, we accelerated the first iteration by computing the

effective alphabet first. Quite often, the input string does not use the whole alphabet
range, and we can apply the effective alphabet before computing the suffix array,
because the input string and the mapped string have the same suffix array, as the
lexicographic order of suffixes does not change. In our implementation, we then pack
as many mapped characters as possible into an integer index.

124

5.2 DISTRIBUTED PREFIX DOUBLING

Algorithm 5.1. Generic Prefix Doubling algorithm.
Input :Text T ∈ DIA〈Σ〉.
Output :Suffix array SA.

1 S := T.Window2((i, [t0, t1]) 7→ (i, t0, t1)) // Initial triples (combining PD1–PD3).
2 for k := 1 to dlog2 |T |e − 1 do
3 S := S.Sort((i, r0, r1) by (r0, r1)) // Sort triples by ranks.
4 N := S.FlatWindow2((i, [a, b]) 7→ CName(i, a, b)) // Map to ranks 0 or i.
5 if N.Filter((i, r) 7→ (r = 0)).Size() = 1 then // If all ranks are unique, then
6 return SA := N.Map((i, r) 7→ i) // return ranks as suffix array,
7 N := N.PrefixSum((i, r), (i′, r′) 7→ (i′,max(r, r′)) // else calculate new ranks
8 S := Generate new rank-tuples using N // and run next iteration.

Algorithm 5.2. CName—Identifications of h-groups.
Input : j ∈ N0, (i, r0, r1), (i′, r′0, r′1) ∈ N .
Output :Tuple marking h-groups.

1 if j = 0 then
2 emit (i, 0) // First DIA item has no offset.

3 emit
{

(i′, j) if (r0, r1) 6= (r′0, r′1), // Add sentinel if rank pairs alter.

(i′, 0) otherwise. // T [i, n) and T [i′, n) get the same new name.

For subsequent iterations, we continue on line 3 and sort S with respect to the
rank-tuple, which brings equal 2k−1-ranks together. These entries with equal 2k−1-
rank need to be extended to prefix depth 2k. The new 2k-ranks are calculated using
a FlatWindow2 on S (line 4) and the function CName(), which takes the current
position i in S and the items S[i] and S[i+ 1] as input and emits a tuple consisting of
a text position and a new rank (Algorithm 5.2). We know that the suffixes are sorted
with respect to their rank-tuples. Therefore, we can scan S and mark every position
where the rank-tuples differs from its predecessor. CName() marks these non-unique
rank-tuple by giving them the rank 0. All unique rank-tuples get a rank equal to their
current position in S. If there is only one suffix with rank 0, then we know that all
ranks differ and that we have finished the computation, see line 5. Otherwise, we can
use the DIA operation PrefixSum() with a max operator to set the rank of each tuple
to the largest preceding rank (line 7). The sequence of ranks is initialized by emitting
an arbitrary first rank (zero in Algorithm 5.2) as first item in the DIA. With this
extra item, the rank array N always contains n items. Now each suffix has a refined
rank.
The next step (line 8) is to identify the ranks of the suffixes required for the next

doubling step. During the k-th doubling step, we fill S with one triple for each index
i ∈ [0, n) that contains the current name of the suffix at position i and the current
name of the suffix at position i+ 2k−1. Next, we discuss approaches for doing so.

125

CHAPTER 5 DISTRIBUTED SUFFIX ARRAY CONSTRUCTION

Algorithm 5.3. Generating Names using the ISA in Thrill.
Input : k ∈ N0.
Output :S contains the triples that are used to compute new ranks.

1 N := N.Sort((i, r) by i) // Compute ISA2k .

2 S := N.Window2k+1((j, [(i, r), . . . , (i′, r′)]) 7→
{

(i, r, r′) if j + 2k < |T | ,
(i, r, 0) otherwise.

)

Generating Ranks using the Inverse Suffix Array
We can obtain the h-names of the required suffixes using the inverse h-suffix array. This
approach is based on the qsufsort algorithm [LS07] and was pioneered in a distributed
setting using MPI by Flick and Aluru [FA15].

Algorithm 5.3 shows in line 1 how we can sort pairs in N based on their position in
the text, such that we get the inverse 2k-suffix array ISA2k in iteration k. This inverse
2k-suffix array contains the current 2k-name of each suffix. For each position i, we
need the name of the (i + 2k)-th suffix. To get this name, we can simply scan over
the DIA N with a Window() operation of width 2k + 1, i. e., the same as shifting the
inverse 2k-suffix array by 2k positions and appending 0s until its length is n.

While our experiments show that this approach is faster than prefix doubling using
sorting (described in the next subsection), it is obvious that it only works as long as
the Window() size 2k + 1 fits into the RAM of each worker. The second solution using
sorting does not suffer from this limitation and can be used as a fallback method.

Generating Ranks using Sorting
Next, we adapt an external memory prefix doubling algorithm by Crauser and Fer-
ragina [CF02] to Thrill. The idea is to compute the new rank pairs by sorting the old
ranks with respect to the starting position of the suffix, as shown in Algorithm 5.4.
During each iteration, we know for each suffix the suffix index whose current rank is
required to compute the next refined rank. Hence, we can sort the tuples containing
the starting positions of the suffixes and their current rank in such a way that if there is
another rank required for a rank pair, then it is the rank of the succeeding tuple (line 1).
To do so, we use the following comparison operator: <kop: (N0,N0)× (N0,N0)→ bool
in Algorithm 5.4:

(i, r) <kop (i′, r′) =
{
i div 2k < i′ div 2k if i ≡ i′ (mod 2k) ,
i mod 2k < i′ mod 2k otherwise.

(5.1)

This relation orders pairs (i, n) first by the k least significant bits and then by the
w− k most significant bits of i, where w is the number of bits used to store i, i. e., we
group all positions that are 2k positions apart (modulo) and sort those in text order
(division).

126

5.2 DISTRIBUTED PREFIX DOUBLING

Algorithm 5.4. Generating Ranks using Sorting in Thrill.
Input : k ∈ N0.
Output :S contains the triples that are used to compute new ranks.

1 N := N.Sort(<kop) // Sort such that ranks of i and i+ 2k are consecutive.

2 S := N.Window2((j, [(i, n0, n1), (i′, n′0, n′1)]) 7→
{

(i, n0, n
′
0) if i+ 2k = i′ ,

(i, n0, 0) otherwise.

)

For example, <2
op reorders [0 .. 8) to [0, 4, 1, 5, 2, 6, 3, 7]. The modulo operations and

divisions with powers of two are fast in practice as they can be realized using bit masks.
After sorting using the <kop-comparator, we need to ensure that two consecutive ranks
are the ones required to compute the new rank, since the required rank may not exist
due to the length of the text, i. e., during the k-th iteration each suffix beginning at
a text position greater than n − 2k. In this case, we use the sentinel rank 0, which
compares smaller than any valid rank (line 2). We return one triple for each position,
consisting of a text position, the current rank of the suffix beginning at that position
and the rank of the suffix 2k positions to the right (if it exists and 0 otherwise).
Example 5.5 shows the suffix array construction for T = bdacbdacb using the

approach described above. Comments of the form x.y translate to “line y in Algorithm
x is responsible for the change.” We give a data-flow graph of this in Figure 5.1.

Example 5.5. Example of prefix doubling using sorting in Thrill.
T = [b, d, a, c, b, d, a, c, b]
S = [(0, b, d), (1, d, a), (2, a, c), (3, c, b), (4, b, d), (5, d, a), (6, a, c), (7, c, b), (8, b, $)] // 5.1.1

k = 1 // 5.1.2
S = [(2, a, c), (6, a, c), (8, b, $), (0, b, d), (4, b, d), (3, c, b), (7, c, b), (1, d, a), (5, d, a)] // 5.1.3

N = [(2, 0), (6, 0), (8, 2), (0, 3), (4, 0), (3, 5), (7, 0), (1, 7), (5, 0)] // 5.1.4
4 items with rank 0 // 5.1.5
N = [(2, 0), (6, 0), (8, 2), (0, 3), (4, 3), (3, 5), (7, 5), (1, 7), (5, 7)] // 5.1.7
N = [(0, 3), (2, 0), (4, 3), (6, 0), (8, 2), (1, 7), (3, 5), (5, 7), (7, 5)] // 5.4.1
S = [(0, 3, 0), (2, 0, 3), (4, 3, 0), (6, 0, 2), (8, 2, 0), (1, 7, 5), (3, 5, 7), (5, 7, 5), (7, 5, 0)] // 5.4.2

k = 2 // 5.1.2
S = [(6, 0, 2), (2, 0, 3), (8, 2, 0), (0, 3, 0), (4, 3, 0), (7, 5, 0), (3, 5, 7), (1, 7, 5), (5, 7, 5)] // 5.1.3

N = [(6, 0), (2, 1), (8, 2), (0, 3), (4, 0), (7, 5), (3, 6), (1, 7), (5, 0)] // 5.1.4
2 items with rank 0 // 5.1.5
N = [(6, 0), (2, 1), (8, 2), (0, 3), (4, 3), (7, 5), (3, 6), (1, 7), (5, 7)] // 5.1.7
N = [(0, 3), (4, 3), (8, 2), (1, 7), (5, 7), (2, 1), (6, 0), (3, 6), (7, 5)] // 5.4.1
S = [(0, 3, 3), (4, 3, 2), (8, 2, 0), (1, 7, 7), (5, 7, 0), (2, 1, 0), (6, 0, 0), (3, 6, 5), (7, 5, 0)] // 5.4.2

k = 3 // 5.1.2
S = [(6, 0, 0), (2, 1, 0), (8, 2, 0), (4, 3, 2), (0, 3, 3), (7, 5, 0), (3, 6, 5), (5, 7, 0), (1, 7, 7)] // 5.1.3

N = [(6, 0), (2, 1), (8, 2), (4, 3), (0, 4), (7, 5), (3, 6), (5, 7), (1, 8)] // 5.1.4
1 item with rank 0 // 5.1.5
Result: [6, 2, 8, 4, 0, 7, 3, 5, 1] // 5.1.6

127

CHAPTER 5 DISTRIBUTED SUFFIX ARRAY CONSTRUCTION

T

S := T.Window2

S := S.Sort

N := S.FlatWindow2

N.Filter

Size

N := N.PrefixSum

N := N.Sort

S := N.Window2

S := S.Sort

N := S.FlatWindow2

N.Filter

Size

N.Map

SAT

Figure 5.1. DIA data-flow graph of two iterations of prefix doubling with sorting,
exported by Thrill.

Distributed External Prefix Doubling with Discarding
Both prefix doubling variants presented in the previous two sections have large I/O
costs from repeatedly re-ranking suffixes whose final rank is already known. These are
included in each distributed sorting operation and cause needless overhead. Crauser
and Ferragina [CF02] and Dementiev et al. [Dem+08a] presented a method called
discarding to alleviate this by omitting all suffixes no longer needed from sorting
operations. To this end, we classify suffixes into three categories:

1. Suffixes that do not yet have a unique rank are called not unique, which is also
the initial state,

2. suffixes that have a unique rank, but are required to compute another rank pair
for a suffix that does not yet have a unique rank, are called unique, and finally

3. unique suffixes that are no longer needed for any other can be discarded.

128

5.2 DISTRIBUTED PREFIX DOUBLING

Algorithm 5.6. Prefix Doubling with Discarding.
Input : k ∈ N0.
Output :Suffix array SA[.]

1 S := T.Window2((i, [t0, t1]) 7→ (i, t0, t1)) // Create initial triples (i, T [i], T [i+ 1]).
2 S := S.Sort((i, r0, r1) by (r0, r1)) // Sort triples by rank pairs.
3 N := S.FlatWindow2((i, [a, b]) 7→ CName(i, a, b)) // Map ranks to 0 or i.
4 N := N.PrefixSum(((i, r), (i′, r′)) 7→ (i′,max (r, r′))) // Calculate initial ranks.
5 for k := 1 to dlog2 |T |e do
6 P := N.FlatWindow3((i, [a, b, c]) 7→ Unique(a, b, c, i)) // Get states of items.

7 P := Union(P,U).Sort(<kop) // Concatenate undiscarded items and sort them.

8 P := P.FlatWindow3((i, [a, b, c]) 7→ NPairs(i, a, b, c, k)) // Compute new rank
9 D′ := P.Filter((i, r0, r1, s)) 7→ (s = d) // pairs and update state. Then find and

10 D := Union(D,D′).Map((i, r0, r1, s) 7→ (i, a.r0))) // update discarded items.
11 U ′ := P.Filter((i, r0, r1, s) 7→ (s = u)) // Separate already unique items and
12 U := U ′.Map((i, r0, r1, s) 7→ (i, r0, s)) // items that still need to be sorted. Former
13 I ′ := P.Filter((i, r0, r1, s) 7→ (s = n)) // are only needed to compute the rank pairs
14 I := I ′.Map((i, r0, r1, s) 7→ (i, r0, r1)) // and stored in U. Latter are stored in I.
15 if I.Size() = 0 then // If all items are unique
16 return SA := D.Sort((i, r) by r).Map((i, r) 7→ i) // return SA.

17 M := I.FlatWindow2((i, [a, b]) 7→ RankDiscarding(i, a, b)) // Form ranks
18 M := M.PrefixSum(((i, r0, r1, r2), (i′, r′0, r′1, r′2)) 7→

(i′,max(r′0, r′0),max(r′1, r′1), r′2))
19 N := M.Map((i, r0, r1, r2) 7→ (i, r2 + (r1 − r0))) // complying with old ranks.

Using this classification, we can extend the prefix doubling algorithm using sorting for
generating new ranks to exclude unique and discarded suffixes from expensive sorting
operations. To be more precise, we can ignore discarded suffixes during all sorting
operations, and unique suffixes are only required during the computation of the new
ranks (Algorithm 5.4). Here, they are needed as second rank of the triple (n′0 in line 2).
We do not emit a triple for an index corresponding to a unique suffix. Instead, we just
store the unique pair. The algorithm terminates when all suffixes are either unique or
discarded. To compute the final suffix array, we concatenate the unique and discarded
pairs and sort them by their rank.
Since we ignore discarded suffixes during the computation of the new ranks, we

must compute the new rank based on the old rank instead of the position among all
other suffixes, as we did before. This can be done using multiple prefix sum operations,
see lines 18 and 19 in Algorithm 5.6. In addition, we must keep track of the unique
and discarded suffixes, but the total overhead is small compared to the savings during
the sorting operations.
Initially, Algorithm 5.6 behaves like the generic prefix doubling algorithm (see

Figure 5.2 for the data-flow graph). We compute rank pairs for consecutive text
positions (line 1) and compute the ranks for all suffixes the same way we do in the

129

CHAPTER 5 DISTRIBUTED SUFFIX ARRAY CONSTRUCTION

generic algorithm. Next, we add a state to the triples (i, r1, r2), i. e., creating 4-tuples
(i, r1, r2, s), indicating whether a rank pair is unique (s = u) or not unique (s = n)
(see Function Unique, Algorithm 5.7). All 4-tuples that are unique do not need a
new rank but they may still be required to compute the new rank of another suffix.
Hence we add a third state, a 4-tuple that is unique gets the state discarded (d) if it
is not required for the computation of a different rank. Those tuples can easily be
identified by looking at three consecutive tuples after they have been sorted using
the less-comparator described in Equation (5.1). Let a = (i, r1, r2, s), b = (i′, r′1, r′2, s′)
and c = (i′′, r′′1 , r′′2 , s′′) be three continuous tuples with s′′ being unique. If either
s or s′ is unique, then c can be discarded because both a and b will get a unique
rank pair during this iteration. Otherwise (if s or s′ is not unique), c cannot be
discarded as a will not get a unique rank pair during this iteration and we require the
rank of c during the next iteration to compute the rank pair (see Function NPairs,
Algorithm 5.7, lines 7–18). While computing the final state we create new rank pairs
required for the new rank if the state is not unique, as otherwise the rank is final.
Since we do not consider all tuples during the course of Algorithm 5.6, we need to

change the renaming based on the rank pairs. Up to now, we were able to assign ranks
starting at 0 and continue based on the (preliminary) position in the suffix array. If we
discard tuples, this approach is not feasible anymore as we need to consider the ranks
of already discarded tuples. During the k-th iteration, all suffixes that do not have a
unique rank form consecutive intervals in the suffix array. Within these intervals, all
suffixes that cannot be distinguished by their first 2k characters share the same rank.
These ranks are extended, i. e., increased such that the new rank is always at least as
great as the previous rank and greater than the rank of the first preceding suffix that
can be distinguished using the first 2k characters of the suffixes (lines 17–19). At the
beginning of the next iteration, we add all unique ranks to the new ranks and check if
they can be discarded. When all ranks are unique (line 15) we can compute the suffix
array by sorting the discarded tuples by their ranks (line 16).

Prefix Quadrupling
The idea of prefix doubling can be generalized. In the prefix doubling algorithms
described above, during the k-th doubling step, we consider substrings of length 2k.
However, we can also consider length-ak substrings for any integer a with a > 1. To this
end, we need a ranks to compute the new one (two for our prefix doubling algorithms
in Step PD3). Using a ranks to compute new ranks—using a-tuples—obviously results
in more data that we have to sort. In external memory, prefix doubling algorithms
using sorting are I/O optimal for 5-tuples and in practice using 4-tuples, i. e., prefix
quadrupling as shown by Dementiev et al. [Dem+08a]. Here, prefix quadrupling
has the advantage that less memory is required for storing the tuples and that the
I/O-volume is just 1.5 % worse compared to prefix quintupling. The change within our
distributed algorithms can be kept to a minimum as we just require rank quadruples
instead of rank pairs, as we can still use the same comparison operator (Equation (5.1))
for sorting. Our prefix quadrupling algorithms also employ the discarding technique.

130

5.2 DISTRIBUTED PREFIX DOUBLING

Algorithm 5.7. Prefix Doubling with Discarding (Additional Functions)
1 Function Unique(j ∈ N0, (i, r), (i′, r′), (i′′, r′′) ∈ N)
2 if j = 0 then

3 emit
{

(i, r, u) if r 6= r′, // First item is unique

(i, r, n) otherwise. // if its ranks differ from its successor.

4 else if j + 2 = l then

5 emit
{

(i′′, r′′, u) if r′ 6= r′′, // Final item is unique

(i′′, r′′, n) otherwise. // if its ranks differs from its precursor.

6 emit
{

(i′, r′, u) if r 6= r′ and r′ 6= r′′, // An item is

(i′, r′, n) otherwise. // unique if its ranks are unique.

7 Function NPairs(j ∈ N0, (i, r, s), (i′, r′, s′), (i′′, r′′, s′′) ∈ P , k ∈ N0)
8 if j = 0 then

9 emit
{

(i, r, 0, d) if s = u, // The first two items can be discarded

(i′, r′, 0, d) if s′ = u. // if they are unique. Emit ≤ 2 items.

10 else if j + 2 = l then
11 if s′ = n then

12 emit
{

(i′, r′, r′′, n) if i′ + 2k = i′′, // If the last two items of the

(i′, r′, 0, n) otherwise. // DIA are undecided, then we need

13 if s′′ = n then
14 emit (i′′, r′′, 0, n) // to fuse the ranks required for renaming.
15 if s = n then

16 emit
{

(i, r, r′, n) if i+ 2k = i′, // The ranks for renaming are

(i, r, 0, n) otherwise. // consecutive and fused accordingly.

17 if s′′ = u then

18 emit
{

(i′′, r′′, 0, d) if s = u or s′ = u, // Unique items are dis-

(i′′, r′′, 0, u) otherwise. // carded if uncalled-for in future renaming.

19 Function RankDiscarding(j ∈ N0, l ∈ N0, (i, r0, r1), (i′, r′0, r′1) ∈ I)
20 if j = 0 then
21 emit (i, 1, 1, r0) // The new ranks must comply with the old ones.

22 emit





(i′, j + 2, j + 2, r′0) if r0 6= r′0 and r1 6= r′1, // The first rank de-

(i′, 1, j + 2, r′0) else if r0 = r′0, // termines the group and new

(i′, 1, 1, r′0) otherwise . // names are consistent within groups.

131

CHAPTER 5 DISTRIBUTED SUFFIX ARRAY CONSTRUCTION

T

S := T.Window2

S := S.Sort

N := S.FlatWindow2

N := N.PrefixSum

P := N.FlatWindow3

P := P.Sort

P.Size P := P.FlatWindow3

D′ := P.Filter

D′ := D′.Map

U ′ = P.Filter

U := U ′.Map

I ′ := P.Filter

I := I ′.Map

I := I.SortCache

I.SizeM := I.FlatWindow2

M := PrefixSum

N := M.Map

P := N.FlatWindow3

P := Union(U, P)

P := P.Sort

P.Size P := P.FlatWindow3

D′ := P.Filter

D′ := D′.Map

U ′ := P.Filter

U := U ′.Map

I ′ := P.Filter

I := I ′.Map

I := I.SortCache

I.SizeD := Union(D, D′)

D.Sort.Map SAT

Figure 5.2. DIA data-flow graph of two iterations of prefix doubling with discarding
that can easily be exported by Thrill.

132

5.2 DISTRIBUTED PREFIX DOUBLING

5.2.2 Prefix Doubling in MPI
As mentioned before, our prefix doubling algorithms that we implemented using Thrill
are not the first distributed suffix array construction algorithms, and also not the
first distributed prefix doubling suffix array construction algorithms. There exists a
distributed prefix doubling suffix array construction algorithm by Flick and Aluru
[FA15] that is also realized using MPI.

Using MPI, we implemented the same ideas that we described in the previous section.
When we use MPI, the main difference is that we can access arbitrary elements, which
is not possible using DIAs in Thrill. This makes the generation of ranks using the
inverse suffix array much easier, as we do not have to use a huge Window() operation
but can just retrieve the required element from any processing element. Our approach
to use sorting to generate ranks does not differ when we use MPI instead of Thrill; we
can use the same idea and just have to realize sorting using MPI, which we describe
below. The same is true for discarding. We did not consider prefix quadrupling in
MPI, due to its high memory footprint.

Sample Sort Using MPI
Before we analyze the BSP cost of our distributed prefix doubling algorithms, we
analyze our distributed sample sorting algorithm. When we sort data during our
prefix doubling algorithm, we have keys of fixed length, i. e., the rank-tuples or triples.
Hence, we can employ a distributed sample sort [Ble+96] to sort them and do not
rely on a distributed string sorter (as we do in Section 5.4). Now, we want to sort
m elements using p processing elements of size w bytes each. We assume that the
elements are distributed such that there are Θ(m/p) elements on each processing
element. Then, we can sort the data in five steps in parallel.

1. In the beginning, we sort the data locally in O(mp lg m
p) time and choose p− 1

local splitters from the local data, such that the p partitions that are implicitly
given by the splitters have the same size (up to rounding).

2. Next, we gather all local splitters (on all processing elements) to determine p− 1
global splitters (in the same way as in Step 1) in O(p lg p+ pwG+ L) time.

3. We then use the global splitters, which are available on all processing elements,
to partition the local data in O(mp lg p) time.

4. Now that we have all local data sorted and partitioned, we distribute these
partitions in O(mwp G+ L) time, such that for any two processing elements i, j
with i < j, all elements on processing element i are not larger than all elements
on processing element j.

5. Finally, we merge the received partitions locally in O(mp lg p) time to finish the
distributed sample sort.

Note that we can easily prevent an imbalance of data that is sent to one processing
element in advance, by checking if any processing element would receive too much

133

CHAPTER 5 DISTRIBUTED SUFFIX ARRAY CONSTRUCTION

data, as the sizes of the partitions are known, and resize the partitions accordingly. If
we employ the sample sort as described above, we obtain the following lemma.
Lemma 5.1. Using p processing elements, we can sort m elements each of size w
bytes in O(mp

(
lg m

p + lg p
)

+ p lg p+G
(
m
p + p

)
w + L) time.

Cost of Distributed Prefix Doubling
During each iteration, the only difference is the computation of the names. We list the
pseudocode for the generation of the ranks in Algorithms 5.3 and 5.4. There, it is easy
to see that both approaches require the tuples to be sorted followed by a scan of the
sorted data. However, even when using MPI, we would need the Window() operation,
which requires O(nG) communication time in the worst case. We now analyze the
prefix doubling algorithm using sorting in the following.
Given a text T of size n and p processing elements, distributed prefix doubling

requires O(lgn) iterations. During each iteration, we have to sort and scan the input
a constant number of times. We distribute the input such that each of the processing
element has a consecutive slice of size Θ(n/p) of the text.
Initially, in Step PD1, we just have to scan the text on each processing element.

Since the rank of the suffix corresponds to the rank of its first character, this requires
O(n/p) time. Next, in Step PD2, we have to check if all ranks are unique. To this
end, we first sort the suffixes by their rank. Using Lemma 5.1 (with m = n), we can
do so in time O(np (lg n

p + lg p) + p lg p+ (np + p)wG+ L). Checking with consecutive
processing elements requires additional O(wG+ L) time. To compute the rank-triples
in Step PD3, we simply scan the local data again and consider the consecutive rank-
tuples that are on other processing elements and can be obtained in O(wG+ L) time,
which requires O(n/p+ wG+ L) time. Last, in Step PD4, we have to sort the triples,
which again requires O(np (lg n

p + lg p) + p lg p+ (np + p)wG+ L) time. Since we have
to repeat this at most O(lgn) times, we get the following lemma.
Lemma 5.2. Using p processing elements, we can compute the suffix array of a text
T of length n in O(n lgn

p (lg n
p + lg p) + p lg p lgn+G(np + p)w lgn+ L lgn) time using

our prefix doubling algorithm based on sorting.

Space Requirements. In addition to the BSP cost, we also analyze the space re-
quirements of our distributed prefix doubling algorithm. The most space is required
when we sort the rank-triples, as we have to (in the worst case) send and receive
all rank-triples. Therefore, the total space required to hold all rank triples is 2wn
bytes (as wn bytes are already required for the suffix array). Since we need send and
receive buffers, this adds up to 5wn bytes. For the splitters we require pw + p2w
bytes. Here, pw bytes are used for the local splitters and p2w bytes in total. The
space for the global splitters can also be used as receive buffer. In addition, we must
keep track of all partitions, which requires additional p2w bytes in total, i. e., pw bytes
per processing element. Summing all of this up, we require 5wn+ pw + 2p2w bytes
for our distributed prefix doubling algorithm.

134

5.3 DISTRIBUTED RECURSIVE SUFFIX SORTING

5.3 DISTRIBUTED RECURSIVE SUFFIX SORTING
In 2003, the skew aka DC3 suffix sorting algorithm was proposed by Kärkkäinen
and Sanders [KS03], and later generalized to DC by Kärkkäinen et al. [Kär+06].
They employ recursion on a subset of the suffixes to reach linear running time in
the sequential RAM model. The algorithms were later implemented for external
memory [Dem+08a], and DC3 for distributed memory using MPI [KS07]. We mention
that this section is mainly the work of our co-authors in our publication [Bin+18],
and we mainly mention it for completeness.
The key notion of DC is to recursively calculate the ranks of suffixes in only a

difference cover [Sin38] of the original text. A set D ⊆ N0 is a difference cover
for v ∈ N0, if {(i − j) mod v | i, j ∈ D} = {0, . . . , v − 1}. Examples of difference
covers are D3 = {1, 2} for v = 3, D7 = {0, 1, 3} for v = 7, and D13 = {0, 1, 3, 9}
for v = 13. In general, a difference cover of size O(

√
v) can be calculated for any

v in O(
√
v) time [Kär+06]. With respect to suffix sorting, the difference cover has

the interesting property that it samples suffixes for recursive sorting such that the
rank of all samples allows one to order the non-sampled suffixes using a constant-time
comparison operation. The basic steps of the DC3 algorithm are the following:

(D1) Calculate ranks of all suffixes starting at positions in the difference cover D3 =
{1, 2} modulo 3. This is done by sorting the triples (T [i], T [i + 1], T [i + 2]) for
(i mod 3) ∈ D3, calculating lexicographic names, sorting the names back to string
order, and recursively calling a suffix sorting algorithm on a reduced string TR
of size 2

3 |T |, if necessary. This reduced string represents two concatenated copies
of the input string using the lexicographic names: the first copy are all names
for suffixes with i = 1 mod 3 followed by a second copy for all suffixes with
i = 2 mod 3. Hence, each character in TR embodies three characters in T . Step
D1) calculates two arrays, R1 and R2, containing the ranks of suffixes i = 1 mod 3
and i = 2 mod 3, which are computed by inverting the recursively constructed
suffix array of TR.

(D2) Scan the text T and rank arrays R1 and R2 to generate three arrays: S0, S1, and
S2, where array Sj contains one tuple for each suffix i with i = j mod 3. For
each suffix i, the arrays store one tuple containing the two following ranks from
R1 and R2 and all characters from T up to the next ranks. This is exactly the
information required such that the following merge step is able to deduce the
suffix array correctly. Due to the difference cover property the following rank for
each suffix i is among the three elements R1[i], R1[i + 1], and R1[i + 2] for R1,
and analogously for R2.

(D3) Sort S0, S1, and S2 and merge them using a custom comparison function which
compares the suffixes represented in the tuples using characters and ranks. Only a
constant number of characters and ranks need to be accessed in each comparison.
Output the suffix array using the indices stored in tuples.

The first two steps of the DC3 algorithms can be seen as preparation for the final
merge in step D3). Step D1) delivers ranks for all suffixes (i mod 3) ∈ D3 in R1 and

135

CHAPTER 5 DISTRIBUTED SUFFIX ARRAY CONSTRUCTION

R2. In step D2) tuples are created in S0, S1, and S2 which are constructed from the
recursively calculated ranks and characters from the text. The tuples are designed
such that the comparison function can fully determine the final suffix array.
The DC3 algorithm generalizes to DC using a difference cover D for any ground

set size v ≥ 3. DC constructs a recursive subproblem of size d(|T |/v)|D|e, which,
considering |D| = O(

√
v), is of size Θ(|T |√

v
). The algorithm has at most logv |T |

recursion levels and only one recursion branch. At every level of the recursion, only
work with sorting complexity is needed, and a straight-forward application of the
Master theorem to the recurrence Z(|T |) = Z(Θ(|T |√

v
)) +O(sort(|T |)) shows that the

whole algorithm has sorting complexity due to the small recursive subproblem. For
our distributed scenario, DC3 has the same complexity as sorting and merging.

Distributed Difference Cover Algorithms with Thrill
The complete DC3 implementation in Thrill algorithm code is shown as Algorithm 5.8.
In the algorithm pseudocode we omitted some details on padding and sentinels for
inputs that are not a multiple of the difference cover size, but our actual implementation
in Thrill covers all these edge cases.

The goal of lines 2–20 is to calculate R1 and R2 as an interleaved array IR. This is
done by performing the following steps:

1. Scan the text T using a FlatWindow operation and create triples (i, c0, c1, c2)
for all indices (i mod 3) ∈ D3 = {1, 2} (lines 2–4).

2. Sort the triples as S, scan S and use a prefix sum to calculate lexicographic
names N (lines 5–11). The lexicographic names are constructed in the prefix
sum from 0 and 1 indicators. The value 0 is used if two lexicographic consecutive
triples are equal, which means they are assigned the same lexicographic name;
the value 1 increments the name in the prefix sum and assigns unequal triples a
new names.

3. Check if all lexicographic names are different by comparing the highest lexico-
graphic name against the maximum possible (lines 12–13).

4. If all lexicographic names are different, then IS , which contains the indices of S,
is already the suffix array of the suffixes in D3 (lines 19–20). Hence, R1 and R2
can be created directly: the suffix array IS only needs to be inverted and split
modulo 3. However, instead of constructing R1 and R2 as separate DIAs, we
interleave them in IR using a Sort operation such that they are balanced on the
distributed system, as we will be needing pairs of mod 1/2 ranks.

5. Otherwise, prepare a recursive subproblem TR to calculate the ranks. First, sort
the lexicographic names back into string order such that TR = T1 ⊕ T2 where ⊕
is string concatenation (line 14). T1 represents the complete text T using the
lexicographic names of all triples i = 1 mod 3, and T2 is another complete copy
of T with triples i = 2 mod 3. By replacing the triples with lexicographic names,

136

5.3 DISTRIBUTED RECURSIVE SUFFIX SORTING

the original text is reduced by 2
3 . Second, recursively call any suffix sorting

algorithm (e.g. DC3) on TR (line 15). Last, invert the permutation SAR to gain
ranks R1 and R2 of triples of T in D3, again interleave IR such that R1 and R2
are distributed on the workers after the Sort operation.

WithR1 andR2 interleaved in IR from step D1) (lines 2–20), the objective of step D2)
is to create S0, S1, and S2 in line 22. Each suffix i has exactly one representative in the
array Sj where j = i mod 3. Its representative contains the recursively calculated ranks
of the two following suffixes in the difference cover from R1 and R2 (two consecutive
items from IR), and the characters T [i], T [i + 1], T [i + 2] up to (but excluding) the
next known rank.
For DC3 these are T [i], T [i + 1], IR[2i

3], and IR[2i
3 + 1] for a suffix i = 0 mod 3

in S0. IR[2i
3] = R1[i3] is the rank of the suffix T [i+ 1..n) and IR[2i

3 + 1] = R2[i3] is
the rank of suffix T [i+ 2..n), which are both in the difference cover. We write the
tuple as (i, c0, c1, r1, r2) where the indices are interpreted relative to i mod 3. Each
suffix i = 1 mod 3 in S1 stores T [i], R1[i−1

3], and R2[i−1
3] and we write the tuples as

(i, c1, r1, r2) where the indices again are relative to i mod 3. And lastly, each suffix
i = 2 mod 3 in S2 stores T [i], T [i+ 1], R1[i−2

3 + 1], and R2[i−2
3] because R1[i−2

3 + 1]
is the rank of suffix T [i+ 2..n).

In the Thrill code we construct the tuples by zipping pairs from IR, and three consec-
utive characters from T together. The ZipWindow Z ′ (line 22) delivers (c0, c1, c2, r1, r2)
for each index i = 0 mod 3. To construct the tuples in Si two adjacent tuples need
to be used because S2’s element are taken from the next tuple. This can be done in
Thrill using a Window operation of size 2 (line 23). Thus to construct S0, S1, and S2,
we take (c0, c1, c2, r1, r2) for each index i = 0 mod 3 and (c̄0, c̄1, c̄2, r̄1, r̄2) for the next
index i mod 3+3, and output (3i+0, c0, c1, r1, r2) for S0, (3i+1, c0, c1, r1, c2, r2) for S1,
and (3i+ 2, c2, r2, c̄0, r̄1) for S2, as described above (lines 24–26). The three arrays are
then sorted and merged. Here, the comparison function compares two representatives
characterwise until a rank is found. The difference cover property guarantees that
such a rank is found for every pair Si, Sj during the Merge (lines 27–31).

Most of the previous discussion on DC3 can be extended to DC7 straightforwardly:
Sort by seven characters instead of three, construct TR = T0 ⊕ T1 ⊕ T3 in case not all
character tuples are unique, and have step D1) deliver R0, R1, and R3 containing the
ranks of all suffixes (i mod 7) ∈ D7.

Cost of Distributed Difference Cover. The BSP cost of the distributed DC3 algo-
rithms is the following:

Lemma 5.3 ([Kär+06]). The BSP cost of is O(n lgn
p +G(n lgn

p lg(n/p)w) + L lg2 p)

Compared with the BSP cost of distributed prefix doubling (Lemma 5.2), DC3
requires less local computation and is slightly more communication efficient (by a
factor of 1/ lg(n/p)). Additionally, the number of synchronizations only depends on
the number of processing elements, whereas the number of synchronizations of prefix
doubling depends on the input size, which in practice is better.

137

CHAPTER 5 DISTRIBUTED SUFFIX ARRAY CONSTRUCTION

Algorithm 5.8. DC3 Algorithm in Thrill.
1 Function DC3(T ∈ DIA〈Σ〉)
2 T3 := T.FlatWindow3((i, [c0, c1, c2]) 7→ Triple(i, c0, c1, c2))
3 with Function Triple(i ∈ N0, c0, c1, c2 ∈ Σ)
4 if i 6= 0 mod 3 then emit (i, c0, c1, c2)
5 S := T3.Sort((i, c0, c1, c2) by (c0, c1, c2))
6 IS := S.Map((i, c0, c1, c2) 7→ i)
7 N ′ := S.FlatWindow2((i, [p0, p1]) 7→ CTriple(i, p0, p1))
8 with Function CTriple(i ∈ N0, (c0, c1, c2), (c′0, c′1, c′2))
9 if i = 0 then emit 0

10 emit (if (c0, c1, c2) = (c′0, c′1, c′2) then 0 else 1)
11 N := N ′.PrefixSum()
12 nsub = d2|T |/3e, nmod1 = d|T |/3e
13 if N.Max() + 1 6= nsub then
14 T ′R := Zip([IS , N], (i, n) 7→ (i, n))

.Sort((i, n) by (i mod 3, i div 3))
15 SAR := DC3(T ′R.Map((i, n) 7→ n))
16 I ′R := SAR.ZipWithIndex((r, i) 7→ (r, i))
17 IR := I ′R.Sort((r, i) by (r mod nmod1, r))
18 else
19 R := IS .ZipWithIndex((r, i) 7→ (r, i))
20 IR := R.Sort((r, i) by (r div 3, r))
21 IR := IR.Map((r, i) 7→ (i+ 1))
22 Z′ := ZipWindow[3,2]([T, IR],

(i, [c0, c1, c2], [r1, r2]) 7→ (c0, c1, c2, r1, r2))
23 Z := Z′.Window2((i, [(z1, z2)]) 7→ (i, z1, z2))
24 S0 := Z.Map((i, (c0, c1, c2, r1, r2), (c̄0, c̄1, c̄2, r̄1, r̄2)) 7→

(3i+ 0, c0, c1, r1, r2)).Sort((i, c0, c1, r1, r2) by (c0, r1))
25 S1 := Z.Map((i, (c0, c1, c2, r1, r2), (c̄0, c̄1, c̄2, r̄1, r̄2)) 7→

(3i+ 1, c1, r1, r2)).Sort((i, c1, r1, r2) by (r1))
26 S2 := Z.Map((i, (c0, c1, c2, r1, r2), (c̄0, c̄1, c̄2, r̄1, r̄2)) 7→

(3i+ 2, c2, r2, c̄0, r̄1)).Sort((i, c2, r2, c̄0, r̄1) by (r2))
27 return Merge([S0, S1, S2],CmpDC3).Map((i, . . .) 7→ i) with Function

CmpDC3(z1, z2)
28 (c0, r1) < (c′1, r′2) if z1 = (i, c0, c1, r1, r2)∈ S0,

z2 = (i′, c′1, r′1, r′2) ∈ S1,
29 (c0, c1, r2)< (c′2, c̄′0, r̄′1)if z1 = (i, c0, c1, r1, r2)∈ S0,

z2 =
(i′, c′2, r′2, c̄′0, r̄′1) ∈ S2,

30 (r1) < (r′2) if z1 = (i, c1, r1, r2) ∈ S1,
z2 =
(i′, c′2, r′2, c̄′0, r̄′1) ∈ S2,

31 and symmetrically if z1 ∈ Si, z2 ∈ Sj with i > j .

138

5.4 DISTRIBUTED INDUCED COPYING

5.4 DISTRIBUTED INDUCED COPYING
In this section, we take a look at a different technique to compute the suffix array:
induced copying. As shown in Section 4.1, this technique is used in (one of) the fastest
main memory suffix array construction algorithms, DivSufSort by Mori [Mor06], which
we explained in detail in Section 4.2.

In this section, we give a distributed variant of DivSufSort, which we also imple-
mented using MPI. First, in Section 5.4.1, we extend some of the definitions that we
initially introduced to describe the main memory DivSofSort in Section 4.2. Then,
we give an overview of the distributed algorithm and introduce the distributed array,
which we use to describe and analyze our algorithm, in Section 5.4.2. In Sections 5.4.3–
5.4.5, we describe the different steps of our algorithm, before we give a detailed analysis
of space requirements and BSP cost in Section 5.4.6.

5.4.1 Extended Classification of Suffixes
Since we adapt DivSufSort to work in distributed memory, we extend the definitions
that we introduced in Section 4.2. To give a little bit more context for our new
definitions, we repeat some of the prior definitions. We mark everything that we
have already defined previously in grey (). Again, we use the classification intro-
duced by Itoh and Tanaka [IT99] to distinguish between two classes of suffixes in
combination with a notation established by Kärkkäinen et al. [Kär+17] for a similar
classification [Non+11] that we now extend to better fit our distributed setting.
Let T be a text of size n over an alphabet of size σ. Following Definition 4.1, we

classify all suffixes in one of two classes:

(C1) i ∈ C− ⇐⇒ T [i] > T [i+ 1] or (T [i] = T [i+ 1] and i+ 1 ∈ C−) or i = n− 1,

(C2) i ∈ C+ ⇐⇒ T [i] < T [i+ 1] or (T [i] = T [i+ 1] and i+ 1 ∈ C+).

Using these classes we defined one sub-class, which contains all suffixes that we have
to sort to be able to induce all other suffixes in Definition 4.2.

(C3) i ∈ C+. ⇐⇒ i ∈ C+ and i+ 1 ∈ C−.

In the following, we are also interested in another sub-class that is based on C−-suffixes,
which allows us to define the suffix array in a more fine-grained way later on.

Definition 5.1. Let T be a text of length n and a text position i ∈ [0, n), then

(C4) i ∈ C−. ⇐⇒ i ∈ C− and i+ 1 ∈ C+.

Suffixes in this sub-class are not sorted but induced later on. However, we use them
to reduce the number of entries of the suffix array that we have to scan during the
inducing phase. See Section 5.4.5 for more details. The definitions of the fine grained
intervals remain the same and work analogously for our new sub-class. In Figure 5.3a,
we give an example of the extended classification. Remember that we say “a suffix
T [i..n) is in C” if i ∈ C, and C−� := C− \ C−., where C can denote any (sub-)class.

139

CHAPTER 5 DISTRIBUTED SUFFIX ARRAY CONSTRUCTION

i 0 1 2 3 4 5 6 7 8 9

T[i] a b b c a b a b c a

class + + + − + − + + − −

sub-class � � � . � .

(a)

i 0 1 2 3 4 5 6 7 8 9

SA[i] 9 4 0 6 5 1 7 2 8 3

Cαβ $ ab ba bb bc ca

class − + + + − + + + − −

sub-class . . � � . � . . � .

(b)

Figure 5.3. Classification of suffixes in text order (a) and suffix array order (b).

This still allows us to implicitly sort all suffixes lexicographically based on their
class and first (two) characters; we can extend Lemma 4.1 as follows.

Lemma 5.4. Let T be a text of size n over an alphabet Σ and i, j ∈ [0, n), then

1. T [i..n) < T [j..n), if i ∈ C−αβ and j ∈ C+
αβ for any α, β ∈ Σ,

2. T [i..n) < T [j..n), if i ∈ C+.
αβ and j ∈ C+�

αβ for any α, β ∈ Σ, and

3. T [i..n) > T [j..n) if i ∈ C−.αβ and j ∈ C−�αβ for any α, β ∈ Σ.

Proof. We have already proven the first two statements in Section 4.2 where we
introduced classification. The third statement can be proven analogously to the
second one by simply changing the classes of the suffixes and thus the lexicographical
order of the characters that distinguish the suffixes.

Remember that −→C contains the starting positions of the suffixes in (sub-)class C
in lexicographical order. Before, we could express the suffix array of a text over an
alphabet Σ = [0, σ) as SA =

−−→
C−00
−−→
C+.

00
−−→
C+�

00
−−→
C−01
−−→
C+.

01
−−→
C+�

01 . . .
−−−−−−→
C−σ−1σ−1

−−−−−−→
C+.
σ−1σ−1

−−−−−−→
C+�
σ−1σ−1,

see Observation 4.1. Using Lemma 5.4 we can split the C−-suffixes and get the
following observation, which we also visualize in Figure 5.3b.

Observation 5.1. We can express the suffix array of a text over an alphabet Σ = [0, σ)
as follows:

SA =
−−→
C−�00

−−→
C−.00
−−→
C+.

00
−−→
C+�

00
−−→
C−�01 . . .

−−−−−−→
C−�σ−1σ−1

−−−−−−→
C−.σ−1σ−1

−−−−−−→
C+.
σ−1σ−1

−−−−−−→
C+�
σ−1σ−1.

140

5.4 DISTRIBUTED INDUCED COPYING

5.4.2 General Overview
Using the classification, we can compute the suffix array in three steps. Before that,
we have to consider how we distribute the text on all processing elements. For the
remaining section, we use the following notations for the text and its suffixes. Given a
text T of size n, we want to compute the suffix array using p processing elements. We
assume that T is distributed among all processing elements, such that each processing
element holds a consecutive slice T ′ of size n′ = Θ(n/p). Thus, T ′[j] := T [ibn/pc+j] on
the i-th processing element for i ∈ [0, p). Similarly, S′j denotes the j-th suffix of T ′ with
respect to the whole text, i. e., on processing element i we have S′j = T [ibn/pc+ j..n)
for i ∈ [0, p). Now, our distributed DivSufSort requires three steps:

1. On each processing element, we compute C+. and the sizes ofCαβ for all α, β ∈ Σ
and (sub-)classes C for T ′. The results are communicated to get those sizes for
the whole text T . We describe this step in Section 5.4.3.

2. Next, in Section 5.4.4, we sort all suffixes in C+. lexicographically to compute−−→
C+. using a distributed string sorting algorithm, which we describe comprehn-
sively in Section 5.5.

3. Last, we induce
−−→
C+� and

−−→
C−. using

−−→
C+. and then

−−→
C−� using

−−→
C−., which we

describe in Section 5.4.5.

Distributed Arrays. During the computation of the suffix array, we make heavy
use of distributed arrays that distribute data similar to how we distributed the text
above but provide additional functionality. We use distributed arrays to store the
suffixes in the different (sub-)classes Cαβ for α, β ∈ Σ. Here, each processing element
holds a consecutive slice of the array of fixed size, i. e., given a distributed array C of
fixed length `, each processing element holds Θ(`/p) elements, such that on the i-th
processing element the j-th local element is the j + ib`/pc-th global element.
A distributed array supports two operations: pushback and pushfront put data in

the rightmost or leftmost unused space, respectively. The space is reserved beforehand.
Executing one operation takes one superstep, independently of the amount of data
stored. Since the operation can be called from multiple processing elements during
one superstep, the data is stored in an order depending on the rank of the processing
elements that send the data. When we insert data into a distributed array (using
pushfront) originating from processing element i and processing element j with i <
j ∈ [0, p), then all data sent by processing element i will have a smaller index in the
distributed array than any data sent by processing element j (in the same superstep).

The operations are executed delayed, meaning that elements are not stored immedi-
ately, but buffered until communicate() is called, which we use in Algorithm 5.9. We
only insert data using the operations described above or access already stored data.
When we say in “reverse order”, we access all elements stored in the distributed array
from right to left. We indicate two concatenated arrays using ⊗. In this case, the
whole arrays are concatenated, not just the local slices.

141

CHAPTER 5 DISTRIBUTED SUFFIX ARRAY CONSTRUCTION

5.4.3 Identifying Suffixes in Distributed Memory
We first need to identify those suffixes that are in C+., which can be done by a right
to left scan of the text. The last suffix is in C− and thus we only need to look at two
consecutive characters to identify the type of a suffix.
Observation 5.2. Let i ∈ [0, n − 1). We know that n − 1 ∈ C−. If T [i] > T [i + 1],
then i ∈ C− and if T [i] < T [i + 1], then i ∈ C+. Last, if T [i] = T [i + 1], then
i ∈ C− ⇔ i+ 1 ∈ C−.
Hence, if we know the type of the last suffix on each processing element, we can

classify all suffixes. Alas, in our distributed setting, only for the p− 1-th processing
element the class of the last suffix is known. Hence, we cannot simply scan T ′ right to
left on any processing element but the last. Instead, we identify the first suffix Si that
is definitely in C−, i. e., the rightmost position where T ′[i] > T ′[i+ 1] with i < n′ − 1.
Starting at this suffix, we can use Observation 5.2 to classify all suffixes S′j with j < i.
Next, we identify the classes of all remaining suffixes. To this end, each processing
element sends T ′[0] and the class of S′0 to all other processing elements. The class
on the i-th processing element can be unknown, i. e., there has been no suffix that is
definitely in C−. In this case, we can conclude the type of all suffixes on processing
element i using the class and the first character of the first suffix on processing element
i+ 1. Since the class is known on the p− 1-th processing element, we can resolve the
class of all received suffixes and thus, we can classify all suffixes that have not been
classified, yet. Within those suffixes, there is at most one suffix in C+..

In total, we scan the local text at most twice, send O(1) computer words and receive
O(p) computer words in one communication phase. In practice, the communication
overhead is very small (p � n) and there are (again, only in practice) no unknown
suffixes. Still, we could further reduce the communication in exchange for more
supersteps using a prefix sum-like approach to resolve unknown classes. This results
in costs of O(n/p+ pG+ lg pL), which leads to the following lemma.
Lemma 5.5. Let T be a text of length n. Using p processing elements, identifying all
suffixes in C+. costs O(n/p+ pG+ lg pL) time.

In addition to identifying the suffixes in C+., we compute the number of suffixes in
all other (sub-)classes without any overhead in running time. These sizes are needed
to determine the size of the distributed arrays we need for inducing the suffix array
in Section 5.4.5 based on the different sub-clases as described in Observation 5.1.

Space Requirements. We need w bytes to store an index position in the suffix array,
usually w = 4 for smaller texts and w = 5 for larger texts (up to 1TiB). In theory,
dlgne bits are sufficient. In practice, we use a multiple of one byte for faster access.
Here, we assume that we need one byte per character, i. e., σ < 256.
We need at most wn/2 bytes to store C+. in a distributed array. Since we need

to communicate the suffixes, this requires twice the amount of space, resulting in
wn bytes. Storing all those positions requires 2σ2w bytes space on each processing
elements, σ2w bytes for all suffixes in C− and the same amount for the suffixes in C+.

142

5.4 DISTRIBUTED INDUCED COPYING

Substring s1 a b a a b
Substring s2 a b a b

Figure 5.4. Two C+.-substrings. The underlined characters correspond to positions
in C+.. If we consider only the substrings starting and ending at those positions, s2
is lexicographically smaller than s1, as it is a prefix of s1. This can be avoided by
considering one additional character.

5.4.4 Sorting of Suffixes in Distributed Memory
We compute

−−→
C+. in two steps. The first step is the same as in main memory. We sort

the substrings between two adjacent positions in C+. (in text order). Formally, let
next(i) = min{j > i : j ∈ C+. ∪ {n}}. This allows us to define the C+.-substrings as
T+.
i = T [i..min{next(i) + 2, n}), see Definition 4.3. (The additional two characters

are important to correctly sort the C+.-substrings, see Figure 5.4 for an example.) We
sort the C+.-substrings using a distributed string sample sort. A detailed description
of the sorting is given in Section 5.5, where we describe general purpose distributed
string sorting algorithms. Sorting C+.-substrings is just a special case.

Here, the number C+.-substrings m is at most n/2 and the distinguishing prefix size
D, i. e., the number of characters that must be compared to sort the C+.-substrings
lexicographically, is in practice roughly the same at each processing element (which is
confirmed by our experiments, see Table 5.1). Hence, we can sort the C+.-substrings
in O(n lg σ/p+ nG/p+ L) time, using our distributed string sorter, which employs
sample sort and sorts the strings locally using multi-key radix sort.

Having sorted the C+.-substrings, we sort all suffixes in C+. by using the ranks of
the C+.-substrings. We use an approach similar to prefix doubling (see Section 5.2
for details on prefix doubling) with one difference: Instead of using the original input
text, we use the ranks of the C+.-substrings (in text order) as input T ranks for the
prefix doubling algorithm. During each iteration we double the size of the considered
prefixes in T ranks. Thus, we implicitly double the number of considered consecutive
C+.-substrings in T , which is similar to this part of DivSufSort in main memory.
Then, we compute the new ranks using the old ones until all ranks are unique, as
described in the prefix doubling suffix array construction algorithms in Section 5.2.
Since the prefix doubling algorithm relies on indices in the range from 0 to m,

where m is the number if considered suffixes/substrings, we must transform the text
positions of the C+.-substrings accordingly. When all suffixes in C+. are sorted, we
reverse the transformation by first sorting the rank-tuples in text order, and then
identifying all suffixes in C+. during a single scan of the text. Using Lemma 5.2 we
get the following lemma.

Lemma 5.6. Sorting all suffixes in C+. lexicographically, i. e., computing
−−→
C+., costs

O((lg n
p + lg p)n lgn/p+ p lg p lgn+G(n/p+ p)w lgn+ L lgn) time.

143

CHAPTER 5 DISTRIBUTED SUFFIX ARRAY CONSTRUCTION

Algorithm 5.9. Distributed Inducing the Suffix Array
1 for α = σ − 1 down to 0 do
2 for β = σ − 1 down to α do
3 for i ∈

−−→
C+.
αβ ⊗ C

+�
αβ in reverse order do

4 if i > 0 and T [i− 1] ≤ α then
5 C+�

T [i−1]α.pushfront(i− 1)
6 else if i > 0 then
7 C−.

T [i−1]α.pushfront(i− 1)
8 communicate()
9 C−�

T [n−1]0.pushback(n− 1)
10 for α = 0 to σ − 1 do
11 for β = 0 to α do
12 for i ∈ C−�αβ ⊗ C

−.
αβ do

13 if i > 0 and T [i− 1] ≥ α then
14 C−�

T [i−1]α.pushpack(i− 1)
15 communicate()

Space Requirements. The space requirements for this phase of our algorithm is the
same as for distributed prefix doubling (similar to the BSP cost). However, we know
that there are at most n/2 suffixes that we need to sort. While this does not change
the asymptotical BSP cost, we now only require wn bytes for the two ranks. Since we
can use the space for the suffix array for both sending and receiving, we only require
additional 2wn+ pw+ 2p2w bytes for this phase, i. e., in addition to the space that is
already required for the suffix array, which is not used at this point in time.

5.4.5 Inducing the Suffix Array
Now, we compute the suffix array by inducing all other suffixes using only

−−→
C+. and

T , without any sorting. First, we induce
−−→
C+� and

−−→
C−. from

−−→
C+. and the already

induced suffixes in
−−→
C+�. Then, we add the last suffix to its correct position in C−..

Last, we induce
−−→
C−� from

−−→
C−., see Algorithm 5.9.

We assume that the sorted suffixes in
−−→
C+.
αβ are stored in distributed arrays for all

α, β ∈ Σ. In general, all C-objects in the algorithm are distributed arrays. The
distributed arrays are named after the (sub-)classes to which the suffixes belong. The
algorithm runs on all processing elements, and each processing element only considers
its own slice of the distributed arrays when reading from it (but the concatenation in
lines 3 and 12 still affects the whole distributed array). We first induce from right to
left (first inducing phase), i. e., in decreasing lexicographical order (see loop starting
at line 1). Here, we induce all suffixes in

−−→
C+� and

−−→
C−.. Next, we add the last suffix

(line 9) before starting the second inducing phase. Last, we induce the suffixes in
increasing lexicographical order (see loop starting at line 10).

144

5.4 DISTRIBUTED INDUCED COPYING

During this step, we require access to the text (from arbitrary processing elements),
since we need to identify the bucket we induce the suffix into. To this end, we distribute
the text as before. Now, when we require the i-th character, we know that it is stored
on processing element i/` and is the i%`-th character in the local slice, where %
denotes the modulo operator. Then, before we induce the next suffixes (pushfront or
pushback operation in Algorithm 5.9), we retrieve the first character of all suffixes
that are induced during this step in one communication phase, which allows us to
induce into the correct distributed array.

In practice, we can also make use of the property that not all classes contain suffixes.
The inner loops (see lines 2 and 11) are implemented such that they skip distributed
arrays that cannot contain any (relevant) suffixes, which are characterized by the
following lemma:

Lemma 5.7. Let be α, β ∈ Σ, then

1. α < β ⇒ C−αβ = ∅,

2. α > β ⇒ C+
αβ = ∅, and

3. α = β ⇒ C−.αβ ∪ C+.
αβ = ∅.

Proof. Due to the definition of C−αβ and C+
αβ (i ∈ C− ⇒ T [i] ≥ T [i+1] and i ∈ C+ ⇒

T [i] ≤ T [i + 1]), the first two statements are true. To prove the third statement we
assume that i ∈ C+.. Therefore, T [i..n) < T [i+ 1..n) and i+ 1 ∈ C−. This leads to
T [i] = T [i+ 1] ≥ · · · > T [i+ j] with T [i+ j] being the first character strictly smaller
than T [i + 1]. This contradicts our initial assumption. The proof of the last case
(α = β ⇒ C−.αβ = ∅) works analogously.

For each pair of characters there is a communication phase (lines 8 and 15). This
would be sufficient if we did not insert into distributed arrays that we are currently
traversing. Unfortunately, there is one case where this can happen. We describe how
to handle this special cases in the next paragraph.

The Special Case
A run of length r denotes a substring T [i..i+ r) with T [i] = T [i+1] = · · · = T [i+r−1]
for i ∈ [0, n− r). The algorithm (as just described) cannot handle length-3 or longer
runs, as this would require to induce in the same distributed array that we are currently
traversing (lines 3 and 12). Since the arrays are updated just before the next character
combination is considered, we never use the newly induced suffixes to further induce
any suffix. Fortunately, handling those runs is easy in the distributed setting. If
multiple runs of the same character occur, suffixes that are induced by the rightmost
suffix in the run are interleaved. E. g., if we induce suffixes i and j in runs from suffix
array positions k and ` with k < ` during the first inducing step, we know that i− 1
occurs left of j − 1 in the suffix array. This repeats until one or both runs end and
can be generalized for an arbitrary number of runs, see Figure 5.5 for an example.

145

CHAPTER 5 DISTRIBUTED SUFFIX ARRAY CONSTRUCTION

` − 3 j − 2 k − 2 ` − 2 i − 1 j − 1 k − 1 ` − 1 i j k `

e e e e
e e e e
e e e e
c e e e

c d e
c

PE0 PE1 PE2 PE3

Cee

Figure 5.5. The distributed array Cee of size 12 on four processing elements. Initially,
the text positions i, j, k and ` are contained in Cee (the text starting at those positions
up to the first mismatching character is given below these entries). In this example,
we induce from right to left. The arrows indicate the interleaved occurrences of the
induced suffixes that can be induced by just the length of the run. The colors of the
arrows indicate the starting position of the suffix (see the horizontal bars in the text).
Arrows ending in a bar indicate that the suffix is induced into a different distributed
array.

Hence, we can compute the part of the suffix array where the runs occur using only
their length and the suffix array position they have been induced from.
To this end, we first determine all runs that must be contained in the currently

considered distributed array and compute their lengths. Next, we communicate this
information among all processing elements. Now, each processing element can deter-
mine which entries must be stored in its locals slice of the distributed array, by simply
unrolling the runs similar to the example given in Figure 5.5.

The Cost of Inducing
In total, we consider each entry of the suffix array exactly once. Since we use distributed
arrays, we know that the number of suffix array positions on all processing elements
is the same up to rounding. Also, the maximum number of computer words sent
and received is (asymptotically) the same. While there can be communication phases
where only one processing element receives data, all processing elements must receive
the same amount of data at some point (as the content of the distributed array is stored
equally among all processing elements). The additional costs of the steps required
by the special case are dominated by the costs described above. Since we need a
communication phase for each pair of characters, we require O(σ2) supersteps. All
this requires wn bytes to store the induced suffixes and at most twice as much to send
the positions, when we store them in a distributed array. In total, we can induce all
remaining suffixes in the following time.

Lemma 5.8. We can induce all suffixes in C−., C−� and C+� in O(np + n
pG+ σ2L)

time.

146

5.5 DISTRIBUTED STRING SORTING

Last, we need to transform the distributed arrays, such that all suffixes on processing
element i are lexicographically smaller than all suffixes on processing element j if
0 ≤ i < j < p, i. e., compute the final suffix array. To this end, we compute the
number of elements (in each distributed array) that we must sent to each processing
element, then during one large communication phase, we send them accordingly. The
memory required during this phase is 2wn

p bytes per processing element.

5.4.6 Space and Time Requirements
The most memory is required during the sorting of the suffixes in C+., where we need
3wn bytes of memory in addition to the text (n bytes) and 2σ2wp bytes for the size of
the (sub-)classes. During the classification, we need wn+ 2σ2wp bytes and the text.
Last, when inducing all other suffixes, we need wn bytes in addition to the text. This
results in a maximum 3wn/p+2σ2w bytes per processing element, when we distribute
all data equally among all processing elements. Using Lemmas 5.5, 5.6, and 5.8 we
get the following:

Corollary 5.1. Using p processing elements, our distributed induced copying algorithm
can compute the suffix array of a text T of length n over an alphabet of size σ in
O(n lgn

p (lg n
p + lg p) + p lg p lgn+ (np + p)w lgnG+ (lgn+ σ2)L) time, using 3wn +

2σ2wp bytes of space.

Here, we want to note that the factor of σ2 in the space and in the costs for the
synchronization steps implies that this algorithm is only applicable to at most medium-
sized alphabets. However, as we show in our experiments in Section 5.6, it is totally
reasonable for byte alphabets.

5.5 DISTRIBUTED STRING SORTING
In this section, we describe a distributed variant of string sample sort [Bin+17], which
we used in Section 5.4.4 to sort the C+.-substrings. Usually, atomic keys (keys that
can be compared with a single comparison) are considered when sorting data. Longer
strings, on the other hand, cannot be compared with a single comparison, but have
to be compared character by character. Techniques like word packing allow us to
compare as many characters at once as fit into one hardware register, but still require
non-constant time in general.
Let S := {s0, . . . , sm−1} be a set of m strings and let D be the distinguishing

prefix size of S, i. e., the number of characters that must be compared to sort S
lexicographically. Formally, for a set S := {s0, . . . , sm−1} of strings, D := 1 +∑m−1
i=0 max{lcp(si, t) : t ∈ S \ si}, where lcp(s, t) = max{i : s[0..i) = t[0..i)}. Fur-

ther, let M :=
∑m−1
i=0 |si| be the total length of all strings in S.

The strings are distributed among all processing elements such that each processing
element holds roughly the same number of characters (if possible). For simplicity, we
assume that on each processing element the local distinguishing prefix size, i. e., the
number of characters that must be compared to sort all strings that are stored at the

147

CHAPTER 5 DISTRIBUTED SUFFIX ARRAY CONSTRUCTION

processing element, is D′ = Θ(D/p) and that on each processing element there are
strings of total length of m′ = Θ(M/p) characters.
Those assumptions are feasible in our scenario as we focus on the sorting of C+.-

substrings that all have a similar (short) length, see Table 5.1 for practical measure-
ments confirming this simplifying assumption. Splitters are chosen in the same fashion
they are chosen in our distributed sample sort for atomic keys, which is described in
Section 5.2.2:

1. We first sort all strings locally on all processing elements and determine the
local splitters. These splitters are then shared among all processing elements,
and a common set of p− 1 global splitters is chosen.

2. Using the global splitters, on each processing element we determine p intervals
(on the locally sorted strings) that have the global splitters as borders (the
first and last interval has only one global splitter as upper and lower border,
respectively).

3. We distribute the strings in these intervals among all processing elements, such
that the strings in the i-th interval on any processing element are sent to the
i-th processing element.

4. Since all strings that have been sent to any processing element are sorted, we
simply merge the received intervals locally to obtain the final sorting.

The most time consuming task is the sorting in Step 1. Steps 2–4 work similar to
the distributed sample sort described in Section 5.4.4. The only difference is that we
need to consider strings instead of atomic keys.

Note that the sorting as described here differs from the canonical sample sort, as we
first sort locally on each processing element before we determine the splitters. Since
we sort the strings locally, we only have to merge them later. Hence, this approach
could also be denoted as a sample and merge sort hybrid.

5.6 EXPERIMENTAL EVALUATION
Due to the number of algorithms that we evaluate in this section, we split this evalua-
tion in three parts:

1. In Section 5.6.1, we discuss the distributed suffix array construction algorithms
that we implemented using Thrill. We consider them separately, as they achieve
an obviously lower throughput than the algorithms implemented using MPI.
This, however, can to some extend be explained with our experimental setup.
To highlight this, we present some results from [Bin+18], where we had a setup
that works better with the Thrill implementations.

2. Next, in Section 5.6.2, we present the results for our distributed suffix array
construction algorithms that are implemented using MPI.

148

5.6 EXPERIMENTAL EVALUATION

3. Finally, in Section 5.6.3, we give the results for distributed string sorting algo-
rithms. This evaluation is also used to determine the string sorting algorithm
that we use for our distributed suffix sorting algorithm based on DivSufSort.

The setup for all experiments in this section is the same. We conducted the experiments
using LiDO.small nodes (Section 1.4.1) and the inputs described in Section 1.4.2. The
code for the suffix sorting algorithms implemented using Thrill (1) is part of the Thrill
framework and available at https://github.com/thrill/thrill. The implementations
that use MPI (2) and (3) are available at www.kurpicz.org/dsaca. We compiled
the code using GCC 9.2.0 with flags -O3 and -march=native. As in all previous
experiments, we start the timing as soon as the input in available in the main memory
of all processing elements and stop the timing as soon as all suffixes (1 and (2)) or
strings (3) are sorted. All results are the average of five executions of the algorithm.

5.6.1 Evaluation of Distributed Suffix Sorting using Thrill
In this section, we present the results of our distributed suffix sorting algorithms
implemented using Thrill. The algorithms are described in Sections 5.2 and 5.3. Here,
T.DC3 and T.DC7 denote the difference cover algorithm with difference cover sizes
of 3 and 7. The prefix doubling algorithms are denoted by T.PD-Discarding and
T.PD-Window. The former is the algorithm that discards tuples that are not required
any more and the latter is the one that uses a window of size 2k in the k-th iteration
to determine the new ranks. Finally, T.PQ denotes our prefix quadrupling algorithm
that also makes use of discarding.
We show the throughput of the algorithms in Figure 5.6. We conducted a weak

scaling experiment, i. e., we use 256MiB and 512MiB of input per node. Surprisingly,
the throughput is higher when using one node than when using two. The algorithms
achieve a higher throughput than on one node only when we use more than 16 nodes.
If we consider only two or more nodes, the algorithms seem to scale well. Later, we
show results from experiments on different hardware where the algorithms scale well
on any number of nodes.
Nevertheless, T.PD-Window is the slowest of the algorithm on all inputs, which

comes without surprise, as larger windows are expensive to compute. Next, T.DC3
is the second slowest algorithm on all inputs. On CommonCrawl and Wiki, T.DC7 is
the fastest algorithm. On texts with smaller alphabet, T.PD-Window is the fastest
algorithm. It is always the fastest on Prot and on DNA (512MiB per node). When
using 256MiB of input per node, T.DC7 is faster up to 8 nodes, using 16 nodes or
more, T.PD-Discarding becomes faster. Using prefix quadrupling (T.PQ) is never the
fastest nor the slowest suffix sorting algorithm.
We show the memory requirements of all algorithms in Figure 5.7. As expected,

the memory peak of all algorithms does not depend on the input. All algorithms but
T.PD-Discard show a slight increase of the memory peak when comparing the results
on 1 and 4 nodes. Using more nodes does not increase the memory peak. In general,
T.PD-Window is the most memory efficient algorithm and T.DC3 has a 10% higher
memory peak. On all instances, T.PQ has the highest memory peak.

149

www.kurpicz.org/dsaca

CHAPTER 5 DISTRIBUTED SUFFIX ARRAY CONSTRUCTION

1 2 4 8 16 32 64

1

10

Co
mm

on
Cr

aw
l

th
ro

ug
hp

ut
(M

iB
/
s)

256 MiB per node

1 2 4 8 16 32 64

1

10

512 MiB per node

1 2 4 8 16 32 64

10

100

DN
A

th
ro

ug
hp

ut
(M

iB
/
s)

1 2 4 8 16 32 64

10

1 2 4 8 16 32 64

1

10

Pr
ot

th
ro

ug
hp

ut
(M

iB
/
s)

1 2 4 8 16 32 64

1

10

1 2 4 8 16 32 64

1

10

nodes (20 PEs)

Wi
ki

th
ro

ug
hp

ut
(M

iB
/
s)

1 2 4 8 16 32 64

1

10

nodes (20 PEs)

T.DC3 T.DC7 T.PD-Discard T.PD-Window T.PQ

Figure 5.6. Throughput of distributed suffix sorting algorithms (Thrill).

150

5.6 EXPERIMENTAL EVALUATION

1 2 4 8 16 32 64
15.8

25.1

39.8

Co
mm

on
Cr

aw
l

m
em

or
y

pe
ak

(B
/
n)

256 MiB per node

1 2 4 8 16 32 64
15.8

25.1

39.8

512 MiB per node

1 2 4 8 16 32 64
15.8

25.1

39.8

DN
A

m
em

or
y

pe
ak

(B
/
n

)

1 2 4 8 16 32 64
15.8

25.1

39.8

1 2 4 8 16 32 64
15.8

25.1

39.8

Pr
ot

m
em

or
y

pe
ak

(B
/
n

)

1 2 4 8 16 32 64
15.8

25.1

39.8

1 2 4 8 16 32 64
15.8

25.1

39.8

nodes (20 PEs)

Wi
ki

m
em

or
y

pe
ak

(B
/
n

)

1 2 4 8 16 32 64
15.8

25.1

39.8

nodes (20 PEs)

T.DC3 T.DC7 T.PD-Discard T.PD-Window T.PQ

Figure 5.7. Memory peak of distributed suffix sorting algorithms (Thrill).

151

CHAPTER 5 DISTRIBUTED SUFFIX ARRAY CONSTRUCTION

1 2 4 8 16 32

1

10

25
6

M
iB

pe
r

no
de

th
ro

ug
hp

ut
(M

iB
/
s)

Gutenberg

1 2 4 8 16 32

1

10

Wikipedia-Other

1 2 4 8 16 32

3.16

10

31.6

Pi

1 2 4 8 16 32

1

10

nodes (16 PEs)

1
G

iB
pe

r
no

de
th

ro
ug

hp
ut

(M
iB

/
s)

1 2 4 8 16 32

1

10

nodes (16 PEs)
1 2 4 8 16 32

3.16

10

nodes (16 PEs)

T.PD-Window T.PD-Discard T.DC7
T.PD-Sort T.DC3 M.divsufsort

Figure 5.8. Weak scaling plots of distributed and of the fastest non-distributed suffix
sorters run on one host with the same input size.

Evaluating Thrill on Different Hardware
As mentioned earlier, the experimental evaluation of the algorithms on LiDO.small
nodes shows weak results. The algorithms do not scale well and become slower as
soon as the algorithms have to communicate over the network. In Figure 5.8, we
show results from another experiment that we describe in detail in [Bin+18]. Here,
we conducted the experiments on the Amazon Web Services (AWS) Elastic Compute
Cloud (EC2) using i3.4xlarge instances. Each node has 16 Intel Xeon E5-2686 v4
Broadwell vCPUs with 2.30GHz clock speed, 122GB RAM, and 2× 1.9TB Non-
Volatile Memory Express (NVMe) SSDs. All experiments were run with the Thrill
master branch version from January 19th, 2018, compiled with g++ 5.4.1 an Ubuntu
Linux 16.04 “xenial” using Linux 4.4.0-1052-aws.

We limited the available RAM on each host to 8GB using the kernel option mem=8G.
This leaves about 7GB for Thrill, since the kernel reserves itself a portion. This
limitation is extreme, but demonstrates that Thrill can efficiently utilize disk space.
For the comparison with the sequential DivSufSort we removed the memory limit.

152

5.6 EXPERIMENTAL EVALUATION

Since we do not have access to the experimental setup anymore, we can only describe
our previous results. Here, we used the following inputs:
Gutenberg is a concatenation of all text documents from Project Gutenberg by docu-

ment id as available in September 2012. These total 23GiB in size and contain
a version of the human genome as a subsequence.

Wikipedia-Other is a 125.6GiB XML dump of the English Wikipedia date enwiki-
201701.

Pi are the decimals of π, written as ASCII digits and starting with “3.1415.”
In Figure 5.8, it is easy to see that all algorithms scale well. Here, T.DC7 is the

fastest algorithm on Gutenberg and Wikipedia-Other. On Pi, however, T.PD-Discard
becomes faster when using at least 8 nodes. The other difference cover algorithm
T.PD3 is the second fastest algorithm on all inputs but Pi. There, T.DC7 is still
faster. The other prefix doubling versions (T.PD-Window and T.PD-Sort, which is
the same as the discarding algorithm without the discarding) are the slowest two
algorithms on Gutenberg and Without-Other. On Pi, they are faster than T.DC3.
Now, we consider the COST (Section 1.3.3) of the parallelization. To this end, we

use DivSufSort (Section 4.2)—the fastest sequential suffix sorting algorithm. Here,
DivSufSort gets the same input as our distributed suffix sorting algorithms. However,
since DivSufSort requires 9n bytes working space, it can only compute the suffix array
for inputs up to 8GiB. The fastest algorithm T.DC7, requires 4 nodes to be faster
than DivSufSort on Gutenberg and Wikipedia-Other. On Pi, T.DC7 is faster when
we use two or more nodes. In general, the COST is relatively high in this setting.

We cannot determine the reason for the behavior of the algorithms on LiDO.small
nodes. However, compared with the results described above (even though the in-
puts are different) the throughput on one node is very high. All algorithms on one
LiDO.small node achieve roughly a three times higher throughput than in this setup.
Therefore, we assume that it must be a combination of the initial high throughput
and the network.

5.6.2 Evaluation of Distributed Suffix Sorting using MPI
Now, we evaluate our distributed suffix sorting algorithms implemented using MPI.
Here, we compare the two algorithms that we presented in this dissertation: Our
distributed prefix doubling algorithms that uses discarding is denoted by MPI.PD-
Discard (Section 5.2.2) and our distributed suffix sorting algorithm based on DivSufSort
is denoted by MPI.divsufsort (Section 5.4).
We compare both algorithms with the state-of-the-art distributed suffix sorting

algorithm MPI.psac [FA15] that is based on prefix doubling and uses sorting to
compute the new ranks. Instead of discarding, already sorted intervals of the suffix
array are skipped. We also include difference cover implementations by Bingmann
[Bin12] (MPI.DC3, MPI.DC7, and MPI.DC13). However, those implementations can
handle at most inputs of size 4GiB as they use 32-bit indices.

153

CHAPTER 5 DISTRIBUTED SUFFIX ARRAY CONSTRUCTION

We are also aware of different suffix array construction algorithms that are part
of cloudSACA [Abd+14; Met+16]. However, these algorithms cannot compute the
suffix array for inputs of the size that we are considering due to their high memory
requirements, which was also shown by Flick and Aluru [FA15]. Therefore, we omit
cloudSACA in this evaluation.

Construction Time. We show the algorithm’s throughput in our weak scaling exper-
iment in Figure 5.9. Here, we used 512MiB, 1024MiB, and 1536MiB per node as
input, e. g., when using 8 nodes, we compute the suffix array for inputs of size 4GiB,
8GiB and 12GiB.
First, we look at the difference cover algorithms, because they are not able to

compute the suffix array for all input sizes. We see MPI.DC13 is always faster than
MPI.DC7, and that MPI.DC7 is always faster than MPI.DC3. On CommonCrawl
and Prot, MPI.DC13 is the fastest algorithm. However, due to the memory require-
ments (which we describe in the next section) larger inputs cannot be handled by
this algorithm. In general, the difference cover algorithms scale well and have a high
throughput (at least MPI.DC7 and MPI.DC13) compared with the other algorithms.
Next, we compare the other three algorithms. Here, MPI.divsufsort and MPI.PD-

Discard are the only two algorithms that can handle inputs of size 1536MiB per node.
All other algorithms require to much memory to compute the suffix array for these
inputs (as we show in the next section). Comparing MPI.divsufsort and MPI.PD-
Discard, we see that on fewer nodes MPI.divsufsort is faster, but as soon as we use
16 or more nodes, MPI.DP-Discard becomes faster, i. e., it scales better. MPI.psac
scales even better. It is always the fastest when using 64 nodes. Most impressive is
the speed of MPI.psac on DNA, where it is always the fastest algorithm and up to twice
as fast as MPI.PD-Discard.
We also want to mention the throughput of MPI.divsufsort and MPI.PD-Discard

on large inputs (1536MiB per node) on CommonCrawl and Wiki. Here, the throughput
of MPI.divsufsort and MPI.PD-Discard is significantly lower than on all other tested
inputs. Our only explanation is that the distributed (string) merge sort algorithms
that we use in both become a bottleneck.
Therefore, MPI.psac remain the fastest and best scaling distributed suffix array

construction algorithm. However, our new algorithms (MPI.divsufsort and MPI.PD-
Discard) can process inputs of sizes that MPI.psac cannot.

Memory Peak. We give the memory peaks of the algorithms in Figure 5.10. Again,
let us first look at the difference cover algorithms. As expected, their memory peak de-
pends solely on the size of the difference cover. Hence, MPI.DC13 requires more mem-
ory than MPI.DC7, and MPI.DC7 requires more memory than MPI.DC3. MPI.DC7
has nearly the same memory peak as MPI.psac. The memory peak of MPI.psac is
the reason why the algorithm cannot handle larger inputs. MPI.psac requires roughly
63Byte per character of the input. On DNA, it requires only 54Byte per character of
the input. This may be the reason for its high throughput on this input.

154

5.6 EXPERIMENTAL EVALUATION

1 2 4 8 16 32 64

10

100

Co
mm

on
Cr

aw
l

th
ro

ug
hp

ut
(M

iB
/
s)

512 MiB per node

1 2 4 8 16 32 64

10

100
1024 MiB per node

1 2 4 8 16 32 64

10

31.6

1536 MiB per node

1 2 4 8 16 32 64

10

100

DN
A

th
ro

ug
hp

ut
(M

iB
/
s)

1 2 4 8 16 32 64

10

100

1, 000

1 2 4 8 16 32 64

10

100

1 2 4 8 16 32 64

10

100

Pr
ot

th
ro

ug
hp

ut
(M

iB
/
s)

1 2 4 8 16 32 64

10

100

1 2 4 8 16 32 64

10

100

1 2 4 8 16 32 64

10

100

nodes (20 PEs)

Wi
ki

th
ro

ug
hp

ut
(M

iB
/
s)

1 2 4 8 16 32 64

10

100

nodes (20 PEs)
1 2 4 8 16 32 64

10

31.6

nodes (20 PEs)

MPI.divsufsort MPI.PD-Discard MPI.psac
MPI.DC3 MPI.DC7 MPI.DC13

Figure 5.9. Throughput of distributed suffix sorting algorithms (MPI).

155

CHAPTER 5 DISTRIBUTED SUFFIX ARRAY CONSTRUCTION

1 2 4 8 16 32 64
25.1

39.8

63.1

Co
mm

on
Cr

aw
l

m
em

or
y

pe
ak

(B
/
n

)
512 MiB per node

1 2 4 8 16 32 64

25.1

39.8

63.1
1024 MiB per node

1 2 4 8 16 32 64

25.1

31.6

1536 MiB per node

1 2 4 8 16 32 64

25.1

39.8

63.1

DN
A

m
em

or
y

pe
ak

(B
/
n

)

1 2 4 8 16 32 64

25.1

39.8

63.1

1 2 4 8 16 32 64
20

25.1

31.6

1 2 4 8 16 32 64
25.1

39.8

63.1

Pr
ot

m
em

or
y

pe
ak

(B
/
n

)

1 2 4 8 16 32 64

25.1

39.8

63.1

1 2 4 8 16 32 64

25.1

31.6

1 2 4 8 16 32 64

25.1

39.8

63.1

nodes (20 PEs)

Wi
ki

m
em

or
y

pe
ak

(B
/
n

)

1 2 4 8 16 32 64

25.1

39.8

63.1

nodes (20 PEs)
1 2 4 8 16 32 64

25.1

31.6

nodes (20 PEs)

MPI.divsufsort MPI.PD-Discard MPI.psac
MPI.DC3 MPI.DC7 MPI.DC13

Figure 5.10. Memory peak of distributed suffix sorting algorithms (MPI).

156

5.6 EXPERIMENTAL EVALUATION

Nevertheless, our two new algorithms require significantly less memory during the
construction of the suffix array. MPI.PD-Discard require roughly 39Bytes per char-
acter of the input. The difference between MPI.PD-Discard and MPI.psac is that we
use 40-bit integers, whereas MPI.psac uses 64-bit integers. This perfectly explains the
difference in the memory peak of both algorithms, as 63

8 · 5 = 39.375. It should be
noted that we were not able to easily make MPI.psac work with 40-bit integer.
Our second new algorithm requires even less memory. Here, it is not just the

usage of 40-bit integers but the design of the algorithm that results in the low memory
requirements. MPI.divsufsort requires slightly more than 25Bytes per character of the
input and is the most memory efficient distributed suffix array construction algorithm.

Overall, this gives us a good trade-off between speed and memory peak. MPI.psac
is the fastest distributed suffix sorting algorithm (especially running on more than 32
nodes) but also requires the most memory. Our distributed prefix doubling algorithm
(MPI.PD-Discard) requires less memory, but it is slower than MPI.psac. On some
instances significantly slower. Finally, MPI.divsufsort is the most memory efficient
algorithm. However, it does not scale well and is even slower than MPI.PD-Discard
on more than 16 nodes. When using less nodes MPI.divsufsort is faster.

COST of Parallelization. Finally, we consider the COST of parallelization (Sec-
tion 1.3.3) of the distributed string sorting algorithms. To this end, we conducted a
strong scaling experiment. We use 512MiB, 1024MiB, and 1536MiB as input for the
distributed suffix sorting algorithm and also for the sequential DivSufSort. DivSufSort
is the fastest sequential suffix sorting algorithm, which we have shown in Section 4.1.
We show the throughput of the algorithms in this strong scaling experiment in

Figure 5.11. In this experiment, we see MPI.psac’s speed on DNA again. Here, it has
a COST of three on DNA, which is not shown in the figure. Because, for a better
overview, we only show the results for 5 to 20 processing elements, which is sufficient
to show the COST of most algorithms.

In general, the COST on CommonCrawl is high. MPI.PD-Discard and MPI.psac have
a cost of 30 and 35, respectively. Here, MPI.divsufsort has a COST of 15. On Prot
and Wiki, MPI.PD-Discard has the worst COST, whereas MPI.divsufsort has a better
COST of at most 8. On the former MPI.psac has worse COST than MPI.divsufsort
(at most 9), and on the latter it has better COST of at most 7.

While there is no algorithm that has the best COST on all inputs, overall, the COSTs
are reasonable. Most algorithms achieve a higher throughput than the best sequential
suffix sorting algorithm (seq.divsufsort) using at most 20 processing elements (one
node in our setup). Only on DNA, MPI.DC3, MPI.PD-Discard, and MPI.psac require
more than one node to achieve a higher throughput. Hence, we can conclude that
the algorithms do not only scale well due to a bad sequential running time of the
distributed algorithm.

157

CHAPTER 5 DISTRIBUTED SUFFIX ARRAY CONSTRUCTION

5 10 15 20

5

10

15

Co
mm

on
Cr

aw
l

th
ro

ug
hp

ut
(M

iB
/
s)

512 MiB

5 10 15 20

5

10

1024 MiB

5 10 15 20

2

4

6

8
1536 MiB

5 10 15 20
0

20

40

DN
A

th
ro

ug
hp

ut
(M

iB
/
s)

5 10 15 20
0

20

40

5 10 15 20

5

10

15

5 10 15 20

5

10

15

Pr
ot

th
ro

ug
hp

ut
(M

iB
/
s)

5 10 15 20

5

10

5 10 15 20

5

10

5 10 15 20

5

10

15

PEs

Wi
ki

th
ro

ug
hp

ut
(M

iB
/
s)

5 10 15 20

5

10

PEs
5 10 15 20

5

10

PEs

MPI.divsufsort MPI.PD-Discard MPI.psac MPI.DC3
MPI.DC7 MPI.DC13 seq.divsufsort

Figure 5.11. Throughput of distributed suffix sorting algorithms (MPI) and the
fastest sequential suffix sorting algorithm seq.divsufsort.

158

5.6 EXPERIMENTAL EVALUATION

Table 5.1. Average length and standard deviation of those lengths of the C+.-ending
substrings used in the experiments.

input average length standard deviation

CommonCrawl 6.001 0.913
DNA 6.652 1.583
Prot 6.124 0.661
Wiki 6.387 1.493

5.6.3 Evaluation of Distributed String Sorting
In Section 5.5, we describe a distributed string sorting algorithm that we use in
MPI.divsufsort to sort the C+.-ending substrings. In this section, we present an
experimental evaluation of this algorithm. To the best of the author’s knowledge, this
was the first practical implementation of a distributed string sorting algorithm that
we denote by DSS. The only other work on distributed string sorting that the author
is aware of is presented by Bingmann et al. [Bin+20] (based on Schimek’s [Sch19]
Master’s thesis). They present distributed string sorting algorithms (and different
configurations of those): (i) hQuick is a multi-key Quicksort, (ii) PDMS is based on
prefix doubling and merge sort).

Sorting C+.-Ending Substrings in Practice. Our distributed string sorting algo-
rithm DSS is based on a merge and sample sort hybrid. Hence, we can use any
sequential string sorting algorithm to sort the strings locally. Since we use a merge
sort, we can use any sequential string sorting algorithm to sort the strings locally,
before we distribute and merge them. We tested over 130 implementations from
Bingmann et al. [Bin+17] and Kärkkäinen and Rantala [KR08], but only show run-
ning times for the choices where our DSS is fastest on average. We show results
for MSD radix sort, burstsort, multi-key Quicksort, and string sample sort that we
denote by DSS.MSD, DSS.BS, DSS.MKQS, and DSS.SSS, respectively. To be spe-
cific, we use bingmann_msd_CI3, burstsort_sampling_vector, multikey_cache8,
and bingmann_sample_sortBTCUI. A framework to test all sequential string sorting
algorithms is part of the code that we provide.
In Figure 5.12, we show the throughput of the of the distributed string sorting

algorithms mentioned above. DSS has a similar throughput on all inputs (and input
sizes) independent from the used local sorting algorithm. However, DSS.MSD is
slightly faster than all other DSS variants on CommonCrawl, Prot, and Wiki. On these
instances DSS.BS is the slowest of our DSS variants. Therefore, we chose DSS.MSD
as distributed string sorting algorithm in MPI.divsufsort.
Comparing DSS.MSD with the new distributed string sorting algorithms by Bing-

mann et al. [Bin+20], we see that hQuick is slower on all instances (where it finished
sorting, which is not the case for more then eight processing elements). However,

159

CHAPTER 5 DISTRIBUTED SUFFIX ARRAY CONSTRUCTION

PDMS are significantly faster than DSS.MSD on all inputs and input sizes. We cannot
explain the behaviour of PDMS in the large tests on DNA and Prot. Nevertheless,
it scales better than all other tested algorithms. Therefore, PDMS is the fastest
distributed string sorting algorithm.

Sorting other Types of Strings. As seen above, the distributed string sorting algo-
rithms MS and PDMS outperform our implementation on all instances tested in this
dissertation. A result that coincides with the findings of Bingmann et al. Therefore,
we do not conduct further experiments as it has already been shown that PDMS is
several times faster than our fastest distributed string sorting algorithm [Bin+20]. All
their other algorithms but hQuick are also at least as fast as our fastest one.

5.7 CONCLUSION AND FUTURE WORK
First, we presented five different algorithms that we implemented using Thrill. The
results we achieved using our experimental setup were underwhelming. Not only do
the algorithm not scale well, they become slower when using more than one node. This
is a behavior that we cannot explain. We also showed results from other experiments
that were conducted on different (cheaper commodity) hardware. Here, the same
algorithms scale well.

Next, we presented two different distributed suffix sorting algorithms that we imple-
mented using MPI. These algorithms are of similar speed compared with the fastest
distributed suffix sorting algorithm (MPI.psac). However, the big advantage of our
algorithms is that they are very memory efficient. This allows us to compute the suffix
array for larger inputs on the same hardware.
Finally, we showed the first practical distributed string sorting algorithm. We

tested a multitude of sequential string sorting algorithms to determine the fastest local
string sorting algorithm for our setting, i. e., sorting C+.-ending substring. However,
recently more efficient string sorting algorithms have been presented by Bingmann
et al. [Bin+20], making ours obsolete, as they are always worse.

Future Work. Currently, there is only one distributed LCP array construction algo-
rithm. This algorithm is part of MPI.psac [FA15] and computes the LCP array while
computing the suffix array. In main memory, it is faster and more memory efficient to
compute the suffix array first and the LCP array based on the suffix array afterwards,
see Section 4.4. It remains open if computing both arrays successively is also a better
approach in distributed memory.
Also, the distributed string sorting algorithms by Bingmann et al. [Bin+20] can

be used as distributed string sorter in our distributed suffix sorting algorithm, which
should improve the throughput of the However, we do not expect the resulting algo-
rithm to be faster than the ones based on prefix doubling. This leads to the further
questions: Are there a other techniques for distributed suffix sorting that can be used
to efficiently compute the suffix array in distributed memory? Even if those techniques
are not optimal theoretically or not working well in main memory?

160

5.7 CONCLUSION AND FUTURE WORK

1 2 4 8 16 32 64

1, 000

Co
mm

on
Cr

aw
l

th
ro

ug
hp

ut
(M

iB
/
s)

512 MiB per node

1 2 4 8 16 32 64

1, 000

1024 MiB per node

1 2 4 8 16 32 64

1, 000

1536 MiB per node

1 2 4 8 16 32 64

316

1, 000

3, 160

DN
A

th
ro

ug
hp

ut
(M

iB
/
s)

1 2 4 8 16 32 64

316

1, 000

3, 160

1 2 4 8 16 32 64

1, 000

1 2 4 8 16 32 64

1, 000

Pr
ot

th
ro

ug
hp

ut
(M

iB
/
s)

1 2 4 8 16 32 64

1, 000

1 2 4 8 16 32 64

1, 000

1 2 4 8 16 32 64

1, 000

nodes (20 PEs)

Wi
ki

th
ro

ug
hp

ut
(M

iB
/
s)

1 2 4 8 16 32 64

1, 000

nodes (20 PEs)
1 2 4 8 16 32 64

1, 000

nodes (20 PEs)

DSS.MSD DSS.SSS DSS.BS
DSS.MKQS hQuick PDMS

Figure 5.12. Throughput of distributed string sorting algorithms for the C+.-ending
substrings with logarithmic axes.

161

CHAPTER 6
THE DISTRIBUTED

PATRICIA TRIE
In this chapter, we present the distributed Patricia trie, a distributed full-text index
build on top of the suffix array consisting of two levels. We use the distributed Patricia
trie to answer three types of pattern matching queries: existential queries (does the
pattern occur in the text), counting queries (how often does the pattern occur in
the text), and enumeration queries (where in the text does the pattern occur). We
also use succinct data structures to represent the tree structures, which reduces the
memory requirements of the distributed Patricia trie.

This chapter is based in the publication [Fis+17]. We now give a brief overview of
other full-text indices that are related to our work, in Section 6.1. Next, in Section 6.2,
we introduce notations that we use in the rest of this chapter. Most notably, we
introduce succinct data structures, i. e., data structures that require space close to
information-theoretic lower bound. Then, in Section 6.3.1, we present the construction
algorithm for the distributed Patricia trie, and in Section 6.3.2, we show how to use it
to answer queries. Finally, in Section 6.4 we show an experimental evaluation of the
distributed Patricia trie.

6.1 RELATED WORK
First, we mention different distributed text indices. Arroyuelo et al. [Arr+14] consider
a large variety of distributed suffix array data structures with various trade-offs between
replication, number of remote data accesses, and load balance. However, they always
use explicit binary search in the suffix array, leading to logarithmically higher costs
than our approach. Our index can be viewed as an improvement of the global approach
presented in [Arr+14], where we add two levels of tries that allow us to answer each
query exchanging only a constant number of messages. We show that our index scales
better especially for larger text sizes and a larger number of processing elements.

Recently, Flick and Aluru [FA19] present a two-level distributed full-text index that
requires the suffix array and the LCP array. The main difference of their approach
is that they (1) use a look-up table to match the first few characters, (2) a dynamic
top-level trie that balances the subtries, and (3) a space efficient representation of the
local subtries.

163

CHAPTER 6 THE DISTRIBUTED PATRICIA TRIE

There exists also theoretical work by Ferragina and Luccio [FL99] that discusses a
distributed Patricia trie. Their approach is only good when answering long queries,
for example, existential queries “does the pattern occur in the text?” of length m ≥ p,
where p is the number of processing elements and m the length of the pattern. Those
queries can be answered optimally with respect to computation and communication.
A complementary (theoretical) approach is described by Mäkinen et al. [Mäk+04]

and is good for short patterns. Using backwards search, a query can be answered
using m communication steps. The problem is that at most σ processing elements
can be used and, in the worst case, some processing elements might need space Ω(n).

Russo et al. [Rus+10] (theoretically) describe distributed compressed indices. Their
approach partitions the text between the processing elements and works with local
indices. The consequence is that queries have to be processed on every processing
element, contrary to our goal to have total work independent of p.
There are several results that assume that the input text is replicated over all

processing elements (e. g. the distributed suffix tree by Clifford [Cli05]). This makes
index construction and search much easier but severely limits scalability, therefore, we
do not consider this approach any further.
While not a distributed text index, the reduced-space on-disk suffix array (RoSA)

index by Gog et al. [Gog+14b] is a two-leveled index that also makes use of blind
tries. Most notably, the RoSA index is build on top of the Burrows–Wheeler trans-
form [BW94] of the text, which is a transformation of the text that is (1) easy to
compress and (2) can be reversed to obtain the original text.
Also, multi-level full-text indices have been considered for external memory. The

String B-Tree by Ferragina and Grossi [FG99] utilizes Patricia tries at each level to
reduce the I/O volume.

Similar to our distributed Patricia trie, many distributed indices rely on suffix arrays
and sometimes also on the corresponding LCP array. As we described in great detail in
Chapter 5, suffix array construction in distributed memory is well researched. However,
Flick and Aluru [FA15] give the only distributed algorithm for computing both the
suffix array and the LCP array; their approach is within a factor of O(logn) from the
optimal. Thus, we can use the suffix array and the LCP array as the starting point
for our distributed index construction.

6.2 PRELIMINARIES
In this section, we first introduces tries in Section 6.2.2, which we use in both levels
of our distributed Patricia trie. Then, in Section 6.2.1, we give different succinct
representations for trees, i. e., we present how we can represent a tree with n nodes
using only 2n bits. Using additional o(n) bits of space allows us to navigate in the
succinct trees.

164

6.2 PRELIMINARIES

6.2.1 Tries
We build an index on top of the suffix array. This index is a trie, a special case of
trees. Given a labeled tree G = 〈V,E〉 with root r ∈ V , we denote the label of a node
or an edge x ∈ V ∪E by label(x) and the concatenation of all edge labels on the path
from the root to any node v by pathlabel(v). The out-degree of a node v is denoted
by δ+(v). The leaf rank of a leaf ` ∈ V is the number of leaves visited before ` in a
preorder traversal of the tree.
Let R = {R1, R2, . . . , Rk} be a set of strings over the alphabet Σ such that all

strings are distinct and no string is the prefix of another string in R. The trie of R
is an ordered tree with root r, where the edge labels are characters and the leaves
represent string numbers from [1, k] such that:

1. for each node v ∈ V , the labels of the outgoing edges label((v, ·)) ∈ Σ are
distinct,

2. for each string Ri ∈ R, there is a leaf ` ∈ V with Ri = pathlabel(`) and
label(`) = i, and

3. for each leaf ` ∈ V there is a string Ri ∈ R such that Ri = pathlabel(`) and
label(`) = i.

The compressed trie is a trie where each path e1, e2, . . . , e` with ` > 1 consisting
only of nodes with out-degree 1 is replaced by a single edge e such that label(e) =
label(e1) label(e2) . . . label(e`). Still, all outgoing edges of a node v start with a different
character. The string depth of a node v is sd(v) := | pathlabel(v) |, i. e., the length
of the longest common prefix of all strings represented leaves below v. To find all
occurrences of a pattern P in a compressed trie, we start at the root r and follow
the edge e such that label(e) = P [1..| label(e) |]. At each node v, the length of the
pattern matched up to this point equals sd(v). We then follow the edge e with
label(e) = P [sd(v) + 1..| label(e) | + sd(v)]. This process is repeated until we have
matched the whole pattern at the edge (·, v). Then, all leaves that are successors of v
correspond to strings in R that are prefixed by P . If at any point, there is no edge to
follow, the pattern P does not occur in the trie.
The Patricia trie (or blind trie) [Mor68] of a text T is a compressed trie for all

suffixes of T , where each node v just stores the first character and the string depth
sd(v). Due to this limitation, finding all occurrences of a pattern requires two steps—a
blind search followed by a comparison to a substring of T (which has been determined
by the blind search):

(BS1) For the blind search, we start at the root and follow the edge matching the
pattern at the position corresponding to the string depth, i. e., at a node v we
follow the edge e with label label(e) = P [sd(v)]. We repeat this until we have
reached a node v such that sd(v) ≥ |P | or there is no feasible edge to follow. In
the first case, we retrieve a prefix of length |P | of a suffix corresponding to any
leaf w that is a successor of v and compare that prefix with our pattern P . In
the second case (there is no edge to follow) P does not occur in T .

165

CHAPTER 6 THE DISTRIBUTED PATRICIA TRIE

(BS2) Next, we compare P and T [i..i+ |P | − 1] where i is the label of the leaf w (that
has been identified during the blind search). If the strings are equal, then all
leaves that are below v correspond to an occurrence of P in T . Otherwise, P
does not occur in T .

The Patricia trie can be constructed from the suffix array, LCP array, and the text
in linear time, i. e., scanning the suffix array and the LCP array once and considering
each entry at most twice. The text is required for the edge labels and each position is
accessed at most once. We give a detailed construction algorithm for the distributed
Patricia trie in Section 6.3.1. Later, in Section 6.4, we also compare the construction
time for the tries needed by our index with the time required for the construction of
the suffix array and the LCP array.

6.2.2 Succinct Data Structures
We can represent a tree containing ` nodes using a bit vector BV∈ {0, 1}2`. The bits
represent parentheses; a 1 represents an open parenthesis “(” and a 0 represents a
closing parenthesis “)”. To navigate in the tree, we require additional operations on
the bit vector. If it is clear from context, indicate on which bit vector the operations
are conducted. We already defined rank and select queries in Section 2.1. As a small
reminder, rank0(i) asks for the number of 0’s up to position i−1 and select0(i) returns
the position of the i-th 0. The operations work analogously for rank1 and select1.
Additionally, we need the operation find_close(i), which gives the position of the
matching closing parenthesis for an open parenthesis at position i. All these operations
can be answered in constant time [Cla97; Jac89]. In the following, we explain three
different succinct representations of trees. An example of these representations is
depicted in Figure 6.1.
The first two representations use parenthesis to describe the tree structure. Here,

parentheses are used for an easier understanding of the structure. Since there are only
have two of those (either an opening or a closing parenthesis) we can represent them
as bits in our implementation—but as parentheses in our figures and descriptions.

Balanced Parenthesis
We first start with the balanced parenthesis (BP) representation that was introduced
by Munro and Raman [MR01]. This succinct representation used parenthesis to
represents the tree. It can be constructed by traversing the tree in preorder, i. e.,
we first visit the current node (starting with the root) and then recursively visit all
children starting with the first. We add an opening parenthesis “(” to the bit vector
whenever we visit a node for the first time and we add a closing parenthesis “)” to
the bit vector whenever we visit a node for the last time.

In theory, BP also allows an access of the i-th child in constant time [NS14]. However,
in the implementation used by us (see Section 6.4 for more details), BP does not
support a direct access to the i-th child. Instead, one has to access the first child of the
node at position x (position x+ 1) and then go to the next child (find_close(x) + 1)

166

6.2 PRELIMINARIES

a

i

kj

hc

e

gf

d

b

(a)

ab cd ef g h ij k
BP (()(()(()()))()(()()))

a bc de fghi jk
DFUDS ((((())(())(())))(()))

ab ch id ejkfg
LOUDS 111100110011001100000

(b)

Figure 6.1. An exemplary tree in (a) where each node has a label and the leaves are
marked as boxes. In (b), we show the succinct representation of the tree in all three
different representations that we consider in this chapter. There, we also mark the
positions where the nodes are represented.

until the i-th child is reached in O(i) time. In our implementation, the first two
representations allow an access of the i-th child in constant time, whereas it takes
O(i) time in BP.

Depth First Unary Degree Sequence

The next succinct tree representation is the depth first unary degree sequence (DFUDS)
introduced by Benoit et al. [Ben+05]. This representation is also based on parenthe-
ses is obtained by traversing the tree in preorder and (like in LOUDS) append δ+(v)
opening parentheses followed by a closing parenthesis whenever we visit a node v
for the first time. To make the sequence balanced, we prepend an opening paren-
thesis. The position of the i-th child of the node at position x is identified by
find_close

(
select“)”(rank“(”(x) + 1) + 1

)
+ 1 in constant time.

Level Ordered Unary Degree Sequence

Finally, we want to mention the level ordered unary degree sequence (LOUDS) intro-
duced by Jacobson [Jac89]. When we represent a tree using LOUDS, we actually use
bits to represent the tree and do not make use of parentheses. Hence, there is no access
to the find_close operation. A tree that is encoded using LOUDS is represented
level-wise, i. e., starting with the root, we visit all nodes v of a level from left to right
and add δ+(v) 1’s followed by a 0 to the bit vector. The position of the i-th child of
the node at position x is identified by select0(rank1(x) + i− 1) + 1 in constant time.

167

CHAPTER 6 THE DISTRIBUTED PATRICIA TRIE

PE 0 PE 1 PE 2 PE 3

SA0 SA1 SA2 SA3

GT GT GT GT

PT0 PT1 PT2 PT3

Figure 6.2. Structure of the distributed Patricia trie on four processing elements.
GT is the same on all processing elements, whereas PTi differs for each processing
element i ∈ [0, 4).

6.3 DISTRIBUTED PATRICIA TRIE
Now, we present the construction algorithm for the distributed Patricia trie and show
how to answer queries with it. For simplicity, we assume that the size of the text n is
divisible by number of processing elements p. Then we distribute the suffix array SA
and LCP array LCP in a consecutive fashion, such that the i-th processing element
holds SAi := SA[i · n/p..(i+ 1)n/p) and LCPi := LCP[i · n/p..(i+ 1)n/p). In addition,
each processing element holds a part of the text as described in the next section.
Our proposed data structure, the distributed Patricia trie (DPT), is a two level

index consisting of an index GT for query distribution (first level) and several indices
PTi that can find all occurrences of a pattern P that starts at text positions held
by the local SAi on processing element i (second level). In this case we say that the
the i-th processing element is responsible for P . The index GT is replicated at every
processing element. This allows queries to arrive at arbitrary processing elements and
then to be sent to the responsible processing elements in the next step. There, the
query is processed utilizing PTi. This index is unique for each processing element, see
also Figure 6.2.

6.3.1 Construction of the Distributed Patricia Trie
In this section we show how to construct the distributed Patricia trie in linear time.
We start with the construction of the local Patricia tries (PT) as we use the information
about their smallest and greatest element for the construction of the global tries (GT).

Local Tries
The construction is the same at each processing element, even though the local tries
differ. Our construction algorithm is the extension of an algorithm to compute the
suffix tree, i. e., a compressed trie of all suffixes of a text T . We modified the suffix
insertion algorithm presented in [Mäk+15, p. 143] such that the Patricia trie can be

168

6.3 DISTRIBUTED PATRICIA TRIE

constructed by scanning the suffix array and the LCP array from left to right. The
pathlabel of the rightmost path in a (Patricia) trie is the lexicographically largest
pathlabel in the trie. Since all suffixes in the suffix array are in lexicographical order,
each suffix that is added to the Patricia trie is lexicographical greater that all previously
inserted suffixes and will form the new rightmost path. Therefore, at each point of
time during the construction, only nodes on the rightmost path can be changed. All
other nodes are considered as final. The inner nodes on the rightmost path, i. e., the
nodes that can still be changed, are kept on a stack. Since we compute a Patricia trie,
each node v knows its string depth sd(v).

Initially, we have a stack containing a node with string depth 0 and no children. We
start by adding the first inner node v, with sd(v) = LCP[2], two children (the left child
represents SA[1] and the right child represents SA[2]) with edge labels T [SA[1]+LCP[2]]
and T [SA[2] + LCP[2]], resp. If sd(v) = 0, the node replaces the initial one that has
been on the stack. Otherwise, v will be a child of the initially created node. We now
continue to scan the SA and LCP-array from left to right. Whenever we read a new
position i in the LCP-array, we remove nodes from the stack until the node v on top
of the stack has sd(v) ≤ LCP[i]. If sd(v) < LCP[i], we create a new inner node w
with sd(w) = LCP[i], i. e., we branch below node v. The left child of w (edge label
T [SA[i− 1] + LCP[i]]) is the former rightmost child of v, and the right child of w is a
new leaf referring to SA[i] and has edge label T [SA[i] + LCP[i]]. Next, w becomes the
new rightmost child of v and is put on the stack. If sd(v) = LCP[i], v just gets a new
rightmost child (edge label T [SA[i] + LCP[i]]) referring to SA[i], i. e., v gets a new leaf.
Following these operations, we can compute each local PT in O(n/p) time.

With respect to practical application, we also want to construct succinct representa-
tions of the tries. It is possible to compute a succinct representation using its pointer
based representation. Using the approach described above, we can also compute a
succinct trie representation directly, i. e., reducing the required memory peak for the
construction.

We compute the DFUDS representation of a trie by storing all final nodes and their
subtrees in DFUDS representation. Whenever we remove a node from the stack, we
add it and its subtree at the end of the already computed DFUDS representation of
the previously removed final nodes. This is possible because we construct the trie in
the same order as a depth first search traversal visits all nodes (which is the order in
which the nodes are represented in DFUDS).

Up to now, we have simply named the characters that correspond to the edge labels.
Since all local PTs are on different processing elements, we cannot assure that the
text position required for an edge label is locally available. We have to retrieve all
edge labels during one communication phase. The number of characters stored at each
processing element is Θ(n/p). During the construction of the local Patricia trie PTi,
we scan the arrays SAi and LCPi to determine the first mismatching text positions of
two lexicographically consecutive suffixes. These characters will then be used for the
edge labels later on. If we create a new leaf, we only require one character label.
For a simpler and more realistic analysis of the costs for constructing our local

indexes, we assume that all mismatching characters are stored at the same processing

169

CHAPTER 6 THE DISTRIBUTED PATRICIA TRIE

element where the corresponding suffix starts, i. e., we assume that T [SA[i]..SA[i] +
max(LCP[i], LCP[i+ 1])] is stored on one processing element for all 1 ≤ i ≤ n. This is
usually the case if the text T is composed of a number of smaller documents such that
all documents reside on a single processing element, but all processing elements still
have Θ (n/p) characters. (If this is not the case, one could still replicate parts of the
text on each processing element such that the processing elements hold overlapping
parts of the text.) Under this assumption, each processing element needs to send
O(n/p) characters as edge labels. Further, each processing element also receives at
most O(n/p) characters, as the local Patricia trie has less than 2n/p edges. Finally,
we note that the construction takes one superstep (construct the tree and store the
text positions, then retrieve the characters at those positions).

Lemma 6.1. Given that all mismatching characters are stored at the same processing
element where the corresponding suffix starts, the SA, and the LCP array, constructing
the Patricia tries costs O(np +Gn

p + L). Each PTi requires O(np (lgn+ lg σ)) bits of
space in addition to the size of the tree structure.

Global Trie
Next, we consider the construction of the global trie (GT), which allows us to distribute
queries without accessing the text. GT is the same at every processing element, which
allows arbitrary processing elements to initially process any query. To identify all
processing elements that are responsible for a pattern, we require the smallest and
largest suffix that is represented by each processing element and their LCP values.

Using the set of suffixes S = {T [SA1[1]..n), . . . , T [SA1[n/p]..n), . . . , T [SAp[1]..n), . . . ,
T [SAp[n/p]..n)} to construct GT, we can use the following observation to identify all
processing elements that are responsible for a pattern.

Observation 6.1. Processing element i is responsible for a pattern P if and only if
T [SAi[1]..SAi[1] + |P |) ≤ P and P ≤ T [SAi[np]..SAi[np] + |P |).

Obviously, there can be patterns for which multiple processing elements are respon-
sible. Depending on the type of query, we need to use the second level index of at most
two processing elements to answer a query. Communication with more processing
elements may be necessary, see Section 6.3.2 for more details.
The global trie can be constructed similar to the local Patricia trie construction

described above. The suffixes required for the construction are known (all suffixes
in S). We still require the size of the longest common prefixes of those suffixes. For
two lexicographically consecutive suffixes the size is in the LCP array. The size of
the longest common prefix of the other suffixes is the string depth of the root of the
corresponding local PT. We can propagate all these values during one communication
phase, where each processing element sends the two text positions and LCP values to
all other nodes, sending O(p) messages of constant size. At the end of the phase each
processing element has a temporary SA and a temporary LCP array each of size 2p.
Using these arrays we use the algorithm described above, only handling edge labels
differently.

170

6.3 DISTRIBUTED PATRICIA TRIE

The task of the global trie GT is to distinguish all elements in S without accessing
T . Therefore, the edge labels may consist of more than one character. The first
character of an edge (v, w) is the same character we would store if we constructed a
Patricia trie. Let the text position of this character be i. Instead of storing only this
character and the string depth, we now need to store the substring T [i..i+ sd(w)] as
the edge label of (v, w). Hence, it is not necessary to store the string depth at the
nodes. In addition, we construct the trie with respect to a maximum pattern size
|P |max. We can usually assume that |P |max is constant (chosen during construction)
such that the size |P | of each pattern P is at most |P |max. Thus, the total size of
all edge labels is bounded by 2p|P |max. During the construction, we store references
to the edge labels, i. e., the text position and length. Therefore, at each processing
element it is known which substrings need to be communicated (as edge labels). The
edge labels are distributed among the processing elements in two supersteps. First,
each processing element sends an equal amount of different labels to each processing
element. The cost for this superstep (including the construction of the tree structure)
is O(p+Gp|P |max + L). In the next superstep, each processing element distributes
the received labels to each other processing element, costing O(Gp|P |max + L).

To prevent that a requested substring spans over more than one processing element
we pad the locally stored text with the next |P |max characters. Since we build the trie
for 2c substrings, this requires O(p) time, which leads to the following Lemma.

Lemma 6.2. Given the suffix array and LCP array, constructing the global trie costs
O(p+Gp|P |max + L). The trie requires O(p|P |max lg σ) bits of space in addition to
the space required by the tree structure.

Reducing the Memory Overhead. Now we show how we can reduce the memory
overhead by increasing the number of supersteps required during construction. The
whole index is kept in main memory, therefore, we want the overhead during the
construction to be as small as possible. First, note that we can stream the suffix array
and LCP array, since we just need to scan them once for the construction. Second, we
look at the size of the indices, as usually a text position requires more space than a
character. Since we need characters but obtain text positions, we need to store them
until the next communication phase. Usually, lgn > lg σ (i. e., factor of five to ten
in practice), thus the text positions consume more memory than the labels will later
on. If we only compute s required text positions during a superstep and then retrieve
them, we need O(nsp) supersteps. Thus, we can decrease the memory overhead by
increasing the number of supersteps that are required during the construction. This
yields the following space-time trade-off (regarding the maximum amount of memory
required during construction).

Corollary 6.1. Given the suffix array and the LCP array, the cost of constructing
the Patricia trie is O(np +Gn

p + L n
sp) if we only allow s lgn bits additional space.

171

CHAPTER 6 THE DISTRIBUTED PATRICIA TRIE

PE 0 PE 1 PE 2 PE 3

SA0 SA1 SA2 SA3

GT GT GT GT

PT0 PT1 PT2 PT3

Q

Figure 6.3. Answering a query Q with a distributed Patricia trie on four PEs.

6.3.2 Querying a Distributed Index
The global trie GT is constructed for the set S = {T [SA1[1]..n), . . . , T [SA1[n/p]..n), . . . ,
T [SAp[1]..n), . . . , T [SAp[n/p]..n)} and a maximum pattern length of mmax. For any
i ∈ [1, c] the 2i-th leaf corresponds to the lexicographically smallest suffix and the
2i+ 1-th leaf corresponds to the greatest suffix represented by processing element i.
Querying GT is different from querying a trie as we do not want to find all occurrences
of a pattern P , but want to find all processing elements that represent P . We still
follow the edges according to their label and the corresponding position in P until we
have matched P at a node u or have a mismatch with the label of an edge (v, w).
In the first case and if v is an internal node, we need to identify the leftmost and

rightmost leaves below v. Let k and ` be the leaf ranks of those leaves, resp. Then all
processing elements j with j ∈ [bk2 c, b `2c] contain positions where the pattern occurs,
as the processing elements cannot be distinguished by P . If (in the first case) v is a
leaf with leaf rank k, then processing element bk2 c can be responsible for P . In this
case we cannot be sure, as pathlabel(v) may be a prefix of P . Therefore, we send P
to processing element bk2 c and use the local Patricia trie PTb k2 c to determine whether
P occurs.
In the second case (there was a mismatch), P can still occur. Let α and β be the

mismatching characters of the label and the pattern, resp. If α >lex β we look at the
leftmost leaf below w. If the leaf rank k is even, P does not occur in any processing
element, as it is smaller than the lexicographically smallest suffix represented by pro-
cessing element bk2 c and greater than the lexicographically greatest suffix represented
by processing element bk2 c − 1 because otherwise another edge would be followed in
the beginning. If the rank is odd, P may occur in processing elements bk2 c. In the
other case (α <lex β), we need to get the rightmost leaf below w and check the leaf
rank. There may be an occurrence if the leaf rank is even and there cannot be an
occurrence if the leaf rank is odd (with the same type of argumentation given before).
All processing elements that are responsible for a pattern P form a consecutive interval
that we denote by GT(P) = [`, r].

172

6.3 DISTRIBUTED PATRICIA TRIE

Lemma 6.3. Given GT and a pattern P . Let GT(P) = [`, r], if ` 6= r then P occurs
at least once in the processing elements ` and r and n

p times in processing elements j
for all j ∈ (`, r).

Now we take a look at how to answer pattern matching queries in the local Patricia
tries. First, we look at the processing of a single query. Later, we show how the index
can be used to answer a batch of queries.

Pattern Matching Queries.
We now look at three different types of pattern matching queries that we can answer
using the distributed Patricia trie.
Existential Queries : Given a pattern P , we want to know whether the pattern P

occurs in the text T .
Counting Queries : Given a pattern P , we want to know how often the pattern P

occurs in the text T .
Enumeration Queries : Given a pattern P , we want to know all text positions in T

where P occurs.
First, we look at an existential query P of length m that arrives at processing element
i. We can answer the query in three supersteps (see also Figure 6.3):

(EX1) At processing element i, we identify all processing elements that are responsible
for P , i. e., all processing elements j with j ∈ GT(P). If ` 6= r we know that P
occurs in T (see Lemma 6.3), else we send P to processing element `.

(EX2) Next, we perform a blind search in PT`. If the blind search fails, we know that
P does not occur in T . Otherwise, the blind search returns a text position q.
During the communication phase we retrieve T [q..q +m− 1].

(EX3) Using T [q..q + m − 1 − 1] we can verify the existence of P in T in the third
superstep. When a query can be answered at a processing element, we do not
send it somewhere else, as the target depends on the application the index is
used for.

The cost of an existential query is the following. During the first superstep we
identify all processing elements that can answer the query and send it to one processing
element costing O(ttrie(P) +mG+ L). We let ttrie(P) denote the time required to
search for P in a trie. Depending on the implementation this requires O(m lg σ) time
(binary search) or O(m+ lg lg σ) time [FG15]. In the second superstep we perform a
blind search and retrieve a substring of length m. This costs O(ttrie(P) +mG+ L).
During the last superstep we just compare two strings of length m in O(m) time.

Counting all occurrences of a pattern can be seen as an extension of the existential
query and can be answered similarly (requiring four supersteps). Let P be a counting
query of length m arriving at processing element i.

173

CHAPTER 6 THE DISTRIBUTED PATRICIA TRIE

(CO1) First, we identify all processing elements that are responsible for P , i. e., all
processing elements j with j ∈ GT(P). Let all processing elements j with
j ∈ [`, r] be responsible for P . If ` 6= r we know that P occurs in all those
processing elements (see Lemma 6.3). During the communication phase we send
two queries Q` and Qr to processing element ` and r, resp. The former asks for
the lexicographically smallest occurrence of P in PT` and the latter asks for the
lexicographically largest occurrence of P in PTr.

(CO2) In the next step, we perform one blind search in PT` and one blind search in
PTr. If ` 6= r we know that the blind searches will return two text positions q`
and qr that are the lexicographically smallest and largest occurrences of P in
T . If one of the blind searches fails we know that the processing element is not
responsible for P and we can send that there are no occurrences at the processing
element. During the communication phase, we retrieve T [q`..q` + m − 1] and
T [qr..qr +m− 1].

(CO3) Using T [q`..q` +m− 1] and T [qr..qr +m− 1] we can verify the existence of P in
T (only necessary if ` 6= r) and also find the number of occurrences at processing
elements ` and r using the leaf ranks. We send the number to processing element
i.

(CO4) We know the number of occurrences occ` and occr of P in processing elements
` and r, resp. We also know that P has to occur n

p times at each processing
element j for j ∈ (`, r). Thus the total number of occurrences of P is occ` +
occr + max (0, r − `− 1) np .

The first superstep costs O(ttrie(P) +Gm+ L) as we need to identify the processing
elements that are responsible for the pattern and send it to two processing elements.
In the second superstep we perform a blind search at two processing elements and
retrieve two substrings of length m. This costs O(ttrie(P) +Gm+ L). The third
superstep consist of comparing the retrieved substrings with the pattern and send the
number of occurrences of the pattern to the processing element where the pattern
arrived initially, i. e., processing element i. This costs O(m+G+ L). During the last
superstep we need to compute the total number of occurrences at processing element
i which costs O(1 + L).
Last, we consider enumeration queries. Let P be a enumeration query of length

m arriving at processing element i. During the first two supersteps answering an
enumeration query does not differ from answering a counting query, i. e., Steps (CO1)
and (CO2). The remaining steps are the following.

(EN3) Using T [q`..q` +m− 1] and T [qr..qr +m− 1] we can verify the existence of P in
T (only necessary if ` 6= r) and also find all positions where the pattern occurs.
We send all these positions to processing element i.

(EN4) We have received all occurrences of P from the processing elements ` and r.
Next, we need to retrieve all occurrences, i. e., the local suffix array from all
processing elements j for j ∈ (`, r).

174

6.3 DISTRIBUTED PATRICIA TRIE

The first two supersteps are the same as for a counting query. Therefore, the costs of
the first two supersteps are the same. The third superstep is very similar to the third
superstep for answering a counting query. The only difference is that we need to send
the text positions of all occurrences to the processing element where the query arrived
initially. This costs O(m+G · occ+ L), where occ denotes the number of occurrences
of P at processing element ` and processing element r. Last, we need to retrieve the
text positions of all occurrences of P in processing elements j with j ∈ (`, r), which
costs O((r − `)npG+ L) if ` < r + 1.

Answering any type (existential, counting or enumeration) of query has (asymptot-
ically) the same cost for the first two supersteps, as we send at most twice as many
queries to the second level (for counting and enumeration queries). To answer counting
queries we send the leaf ranks during third superstep yielding a cost of O(m+G+ L).
In the last superstep we just need to add up the number of occurrences in O(1) time.
When we consider enumeration queries, we need to report all text positions where P
occurs. Let occ be the maximum number of occurrences of P in a processing element
j for j ∈ [`, r], then the cost of the third superstep is O(m+ occ ·G+ L). In the
fourth superstep we need to retrieve all positions from the processing elements j for
all j ∈ (`, r) costing O(1 +Gp · occ+ L). All in all we get the following costs.

Lemma 6.4. Let P be a pattern of size m. Then, answering an existential query
costs O(ttrie(P) +Gm+ L), answering a counting query costs O(ttrie(P) +Gm+ L),
and answering an enumeration query costs O(ttrie(P) +G (m+ occ) + L), where occ
denotes the total number of occurrences of P .

Batched Queries and Load Balancing. When we process a batch of q queries at
once rather than a single query, the number of supersteps does not increase, i. e.,
we can amortize the startup latencies of the BSP model over a large number of
queries. Moreover, if the local work and communication volume is well balanced
over the processing elements, the query throughput scales linearly with p. Balancing
the queries itself can be achieved using any standard load balancing technique, i. e.,
assuming that O(q/p) queries arrive at each processing element is unproblematic.
Balancing how many queries get directed at each local trie is more difficult, since

certain patterns might be more popular than others. However, we can use virtual-
ization—we split the corpus into p′ � p pieces and distribute them randomly to the
actual processing element. Similarly, some documents might be more popular than
others. However, by randomly permuting the documents in the corpus, we can at
least ensure that it is unlikely that many popular documents are assigned to the same
processing element.
When all these balancing conditions are fulfilled, a batch Q of queries can be

completed in time

O(1
p


∑

P∈Q
ttrie(P) +G(|P |+ occ(P))


+ L),

175

CHAPTER 6 THE DISTRIBUTED PATRICIA TRIE

where occ(P) denotes the number of occurrences of P for an enumeration query (and
0 else).

Comparison to the Distributed Suffix Array. Using the (multiplexed) distributed
suffix array (DSA) [Arr+14], a batch Q of q counting queries can be answered in time

O(1
p


∑

P∈Q
tBin(P) +G(|P | lg n

q
+ lg p)


+ L lg pn

q
),

where tBin(P) denotes the time to identify the occurrences of the pattern P in the
suffix array, i. e., |P | lgn. Distributing the queries costs O(

∑
P∈Q |P |+G|P |+ L) and

is dominated by the costs of answering the batch of queries.
Comparing the costs of the DSA with our DPT we get the following result: The max-

imum time used for computation by each processing element is O(1
p

(∑
P∈Q ttrie(P)

)
)

using the DPT since we look in GT and at most two local PTs for each query. The
computation time required by the DSA is O(1

p

(∑
P∈Q tBin(P)

)
) and results from

the binary searches (local and inter-processing element). Hence, the time used for
computation by each processing element differs with respect to the time required for
searching the corresponding suffix array interval for each pattern using a trie and
using binary search. Usually, we can assume that ttrie(P) is smaller than tBin(P).
The cost of communication is O(1

p

(∑
P∈QG(|P |)

)
) using the DPT, as we just

send each pattern to at most two processing elements and retrieve a substring of
the length of the pattern. For the DSA the cost of communication is higher, i. e.,
O(1

pG
(∑

P∈Q |P | lg n
q + lg p

)
) because more substrings need to be retrieved during

the binary search. This effect can be moderated by storing pruned suffixes for each
position of suffix array. Still, the DPT requires only a constant number of substrings
to be retrieved for each query.
Last, the synchronization using DPT is constant, i. e., O(L), but using the DSA

synchronization costs O(lg pn
q L). Due to the constant number of messages being sent

using the DPT, the synchronization cost is optimal and a logarithmic factor worse
using the DSA.

Therefore, if we assume an optimal distribution of the queries and of the documents,
the DPT is theoretically faster than the DSA. This difference in cost can also be seen
in practice. However, the multiplexed DSA is very strong against query bias, whereas
the DPT can be affected by query bias resulting in a load imbalance.

6.4 EXPERIMENTAL EVALUATION
We implemented the distributed Patricia trie. For the representations of bit vectors
and the operations rank, select, and find_close, we use the succinct data structure
library (SDSL) [Gog+14a]. Our implementation is available at www.kurpicz.org/dpt.

176

www.kurpicz.org/dpt

6.4 EXPERIMENTAL EVALUATION

1 2 4 8 16 32 64

10

th
ro

ug
hp

ut
(M

iB
/
s)

CommonCrawl

1 2 4 8 16 32 64
10

100

DNA

1 2 4 8 16 32 64

10

100

nodes (20 PEs)

th
ro

ug
hp

ut
(M

iB
/
s)

Prot

1 2 4 8 16 32 64

10

100

nodes (20 PEs)

Wiki

DPT.pointer DPT.LOUDS DESA

Figure 6.4. Throughput of distributed text index construction (512MiB per node).

We compare the distributed Patricia trie with the recently presented distributed
index [FA19] that we denote by DESA. Unfortunately, we were not able to compile the
distributed suffix array by [Arr+14] on the cluster where we conducted the experiments.
However, we refer to our previous experiments that show that the distributed patricia
trie can answer queries faster than the distributed suffix array [Fis+17].

We conducted the experiments on LiDO.small nodes (Section 1.4.1), used the inputs
presented in Section 1.4.2, and compiled the code using GCC 9.2.0 with flags -O3 and

-march=native. All reported running times are the average of five executions.

Construction Time. We first look at the construction times of both indices. Fortu-
nately, both indices require the suffix array, LCP array, and text as input. Therefore,
we can easily compare the construction times. We compare two variants of the DPT:
DPT.pointer and DPT.LOUDS (represent the tree structure succinctly using LOUDS).
We chose LOUDS over the other representations, because it is the fastest in practice.

Timing starts as soon as the suffix array, LCP array, and text are available in main
memory on all processing elements. (Not the whole text is available at each processing
element, just a slice of the text.) We end the timing as soon as the index is constructed.

177

CHAPTER 6 THE DISTRIBUTED PATRICIA TRIE

1 2 4 8 16 32 64

10

15.8
tim

e
(s

)
CommonCrawl

1 2 4 8 16 32 64

8

10

12

14 DNA

1 2 4 8 16 32 64

8

10

12

14

nodes (20 PEs)

tim
e

(s
)

Prot

1 2 4 8 16 32 64

8

10

12

14

nodes (20 PEs)

Wiki

DPT.pointer DPT.LOUDS DESA

Figure 6.5. Running time for answering 10 million existential queries per PE.

The construction times are depicted in Figure 6.4. All algorithms behave similarly
on all inputs. DESA can be constructed between 1.8 and 2.9 times faster than
DPT.pointer (given the suffix and LCP array). DPT.LOUDS is the slowest to construct
(around 20% slower than DPT.pointer). All algorithms scale very well, but overall
DESA achieves the highest speedup.

Query Time. Now, we measure the time the indices need to answer queries. We
chose a setup similar to the one used by Flick and Aluru [FA19]: We generated 10 000
random queries of length 20 from the inputs and ran the queries 1 000 times. Overall
we obtain 10 million queries for each input. (Flick and Aluru generated 1 000 queries
and ran the queries 10 000 times, which leads to fewer different queries)

First, we consider existential queries, as DESA can only answer those. We show the
existential query times in Figure 6.5. In this weak scaling experiment we see that the
time required to answer 10 million queries per processing element. Initially, DESA and
DPT.pointer answer existential queries at a similar speed. However, DESA balances
the queries better, leading to a better scaling algorithm, which shows when using more
than four nodes. It takes more time to answer queries for larger alphabets.

178

6.5 CONCLUSION AND FUTURE WORK

1 2 4 8 16 32 64

10

15.8

tim
e

(s
)

CommonCrawl

1 2 4 8 16 32 64

10

15

20

DNA

1 2 4 8 16 32 64

10

15

20

nodes (20 PEs)

tim
e

(s
)

Prot

1 2 4 8 16 32 64

10

15

20

nodes (20 PEs)

Wiki

DPT.pointer (counting) DPT.LOUDS (counting)
DPT.pointer (enumeration) DPT.LOUDS (enumeration)

Figure 6.6. Running time for answering 10 million counting and enumeration queries
per processing element.

In Figure 6.6, we see the same experiment for counting and enumeration queries.
As expected, they require more time (because some queries are sent to two processing
elements instead of one) but scale similarly to the existential queries (on the distributed
Patricia trie). Enumeration queries are more time consuming than counting queries,
as we need to aggregate the information instead of computing the result based on two
positions.

6.5 CONCLUSION AND FUTURE WORK
We have presented a distributed Patricia trie that can answer existential, counting,
and enumeration queries. Four years after the paper appeared, Flick and Aluru [FA19]
presented a two-leveld index that is superior to our distributed Patricia trie in all
our experiments (except that we can answer more types of queries). It is faster to
construct and can answer (counting) queries faster and scales better.

179

CHAPTER 6 THE DISTRIBUTED PATRICIA TRIE

Future Work. As we have seen in this chapter, building an index on top of the
suffix array helps to answer queries very efficiently. However, if we want to reduce
the required space further, we can look at indices based on the Burrows–Wheeler
transform (BWT) [BW94]. One prominent examples is the FM-index [FM05]. While
the idea of the FM-index is not directly applicable to distributed memory, we ask
if building distributed indices based on the BWT is practical and results in better
indices than using the suffix array?

180

APPENDIX A
DIVSUFSORT’S CODE

Here, we show the parts of DivSufSort’s code that are described in detail in Section 4.2.

A.1 DIVSUFSORT.C

60 for(i=n-1, m=n, c0=T[n -1]; 0<=i;) {
61 /* type A suffix . */
62 do {++ BUCKET_A (c1=c0);} while ((0<=--i) && ((c0=T[i]) >= c1));
63 if (0 <= i) {
64 /* type B* suffix . */
65 ++ BUCKET_BSTAR (c0 , c1);
66 SA[--m] = i;
67 for(--i, c1=c0; 0<=i && (c0=T[i]) <= c1; --i, c1=c0) {
68 /* type B suffix . */
69 ++ BUCKET_B (c0 , c1);
70 }
71 }
72 }
73 m = n - m;
74 /* ... */

81 for(c0 = 0, i = 0, j = 0; c0 < ALPHABET_SIZE ; ++ c0) {
82 t = i + BUCKET_A (c0);
83 BUCKET_A (c0) = i + j; /* start point */
84 i = t + BUCKET_B (c0 , c0);
85 for(c1 = c0 + 1; c1 < ALPHABET_SIZE ; ++ c1) {
86 j += BUCKET_BSTAR (c0 , c1);
87 BUCKET_BSTAR (c0 , c1) = j; /* end point */
88 i += BUCKET_B (c0 , c1);
89 }
90 }
91 /* ... */

94 PAb = SA + n - m; ISAb = SA + m;
95 for(i = m - 2; 0 <= i; --i) {
96 t = PAb[i], c0 = T[t], c1 = T[t + 1];
97 SA[-- BUCKET_BSTAR (c0 , c1)] = i;
98 }
99 t = PAb[m - 1], c0 = T[t], c1 = T[t + 1];
100 SA[-- BUCKET_BSTAR (c0 , c1)] = m - 1;

Listing A.1. Initialization of DivSufSort

181

APPENDIX A DIVSUFSORT’S CODE

103 # ifdef _OPENMP
104 tmp = omp_get_max_threads ();
105 buf = SA + m, bufsize = (n - (2 * m)) / tmp;
106 c0 = ALPHABET_SIZE - 2, c1 = ALPHABET_SIZE - 1, j = m;
107 # pragma omp parallel default (shared) \
108 private (curbuf ,k,l,d0 ,d1 ,tmp) {
109 tmp = omp_get_thread_num ();
110 curbuf = buf + tmp * bufsize ;
111 k = 0;
112 for (;;) {
113 # pragma omp critical (sssort_lock)
114 {
115 if (0 < (l = j)) {
116 d0 = c0 , d1 = c1;
117 do {
118 k = BUCKET_BSTAR (d0 , d1);
119 if(--d1 <= d0) {
120 d1 = ALPHABET_SIZE - 1;
121 if(--d0 < 0) { break ; }
122 }
123 } while (((l - k) <= 1) && (0 < (l = k)));
124 c0 = d0 , c1 = d1 , j = k;
125 }
126 }
127 if(l == 0) { break ; }
128 sssort (T, PAb , SA + k, SA + l,
129 curbuf , bufsize , 2, n, *(SA + k) == (m - 1));
130 }
131 }
132 # else
133 buf = SA + m, bufsize = n - (2 * m);
134 for(c0 = ALPHABET_SIZE - 2, j = m; 0 < j; --c0) {
135 for(c1 = ALPHABET_SIZE - 1; c0 < c1; j = i, --c1) {
136 i = BUCKET_BSTAR (c0 , c1); {
137 if (1 < (j - i)) {
138 sssort (T, PAb , SA + i, SA + j,
139 buf , bufsize , 2, n, *(SA + i) == (m - 1));
140 }
141 }
142 }
143 /* ... */

145 /* Compute ranks of type B* substrings . */
146 for(i = m - 1; 0 <= i; --i) {
147 if (0 <= SA[i]) {
148 j = i;
149 do {ISAb[SA[i]] = i;} while ((0<=--i) && (0 <= SA[i]));
150 SA[i + 1] = i - j;
151 if(i <= 0) { break ; }
152 }
153 j = i;
154 do {ISAb[SA[i] = ~SA[i]] = j;} while (SA[--i] < 0);
155 ISAb[SA[i]] = j;
156 }

182

A.1 DIVSUFSORT.C

158 /* Construct the ISA of type B* suffixes using trsort . */
159 trsort (ISAb , SA , m, 1);

161 /* Set the sorted order of tyoe B* suffixes . */
162 for(i = n - 1, j = m, c0 = T[n - 1]; 0 <= i;) {
163 for(--i, c1=c0; 0<=i && (c0=T[i]) >= c1; --i, c1=c0) { }
164 if (0 <= i) {
165 t = i;
166 for(--i, c1=c0; 0<=i && (c0=T[i]) <= c1; --i, c1=c0) { }
167 SA[ISAb[--j]] = ((t == 0) || (1 < (t - i))) ? t : ~t;
168 }
169 }

171 /* Calculate the index of start / end point of each bucket . */
172 BUCKET_B (ALPHABET_SIZE - 1, ALPHABET_SIZE - 1) = n;
173 for(c0 = ALPHABET_SIZE - 2, k = m - 1; 0 <= c0; --c0) {
174 i = BUCKET_A (c0 + 1) - 1;
175 for(c1 = ALPHABET_SIZE - 1; c0 < c1; --c1) {
176 t = i - BUCKET_B (c0 , c1);
177 BUCKET_B (c0 , c1) = i;
178

179 /* Move all type B* suffixes to the correct position . */
180 for(i=t, j= BUCKET_BSTAR (c0 , c1);
181 j <=k;
182 --i, --k) { SA[i] = SA[k];
183 }
184 }
185 BUCKET_BSTAR (c0 , c0 + 1) = i - BUCKET_B (c0 , c0) + 1;
186 BUCKET_B (c0 , c0) = i;
187 }
188 # endif

Listing A.2. Sorting B?-substrings

183

APPENDIX A DIVSUFSORT’S CODE

205 for(c1 = ALPHABET_SIZE - 2; 0 <= c1; --c1) {
206 /* Scan the suffix array from right to left . */
207 for(i = SA + BUCKET_BSTAR (c1 , c1 + 1),
208 j = SA + BUCKET_A (c1 + 1) - 1, k = NULL , c2 = -1;
209 i <= j;
210 --j) {
211 if (0 < (s = *j)) {
212 assert (T[s] == c1);
213 assert (((s + 1) < n) && (T[s] <= T[s + 1]));
214 assert (T[s - 1] <= T[s]);
215 *j = ~s;
216 c0 = T[--s];
217 if ((0 < s) && (T[s - 1] > c0)) { s = ~s; }
218 if(c0 != c2) {
219 if (0 <= c2) { BUCKET_B (c2 , c1) = k - SA; }
220 k = SA + BUCKET_B (c2 = c0 , c1);
221 }
222 assert (k < j);
223 *k-- = s;
224 } else {
225 assert (((s == 0) && (T[s] == c1)) || (s < 0));
226 *j = ~s;
227 }
228 }
229 }

231 /* Construct the suffix array by using
232 the sorted order of type B suffixes . */
233 k = SA + BUCKET_A (c2 = T[n - 1]);
234 *k++ = (T[n - 2] < c2) ? ~(n - 1) : (n - 1);
235 /* Scan the suffix array from left to right . */
236 for(i = SA , j = SA + n; i < j; ++i) {
237 if (0 < (s = *i)) {
238 assert (T[s - 1] >= T[s]);
239 c0 = T[--s];
240 if ((s == 0) || (T[s - 1] < c0)) { s = ~s; }
241 if(c0 != c2) {
242 BUCKET_A (c2) = k - SA;
243 k = SA + BUCKET_A (c2 = c0);
244 }
245 assert (i < k);
246 *k++ = s;
247 } else {
248 assert (s < 0);
249 *i = ~s;
250 }
251 }

Listing A.3. Inducing phases (first inducing B- then A-suffixes)

184

A.2 SSSORT.C

A.2 SSSORT.C

746 void
747 sssort (const sauchar_t *T, const saidx_t *PA ,
748 saidx_t *first , saidx_t *last ,
749 saidx_t *buf , saidx_t bufsize ,
750 saidx_t depth , saidx_t n, saint_t lastsuffix) {
751 saidx_t *a;

753 saidx_t *b, *middle , * curbuf ;
754 saidx_t j, k, curbufsize , limit ;

756 saidx_t i;

758 if(lastsuffix != 0) { ++ first ; }
759 /* .. */

763 if ((bufsize < SS_BLOCKSIZE) &&
764 (bufsize < (last - first)) &&
765 (bufsize < (limit = ss_isqrt (last - first)))) {
766 if(SS_BLOCKSIZE < limit) { limit = SS_BLOCKSIZE ; }
767 buf = middle = last - limit , bufsize = limit ;
768 } else {
769 middle = last , limit = 0;
770 }
771 for(a = first , i = 0; SS_BLOCKSIZE < (middle - a);
771 a += SS_BLOCKSIZE , ++i) {
772 ss_mintrosort (T, PA , a, a + SS_BLOCKSIZE , depth);
773 /* ... */
777 curbufsize = last - (a + SS_BLOCKSIZE);
778 curbuf = a + SS_BLOCKSIZE ;
779 if(curbufsize <= bufsize) { curbufsize =bufsize , curbuf =buf ;}
780 for(b=a, k= SS_BLOCKSIZE , j=i; j&1; b -=k, k<<=1, j > >=1) {
781 ss_swapmerge (T,PA ,b-k,b,b+k,curbuf , curbufsize , depth);
782 }
783 }

785 ss_mintrosort (T, PA , a, middle , depth);
786 /* ... */

789 for(k = SS_BLOCKSIZE ; i != 0; k <<= 1, i >>= 1) {
790 if(i & 1) {
791 ss_swapmerge (T,PA ,a-k,a,middle ,buf ,bufsize , depth);
792 a -= k;
793 }
794 }
795 if(limit != 0) {

797 ss_mintrosort (T, PA , middle , last , depth);
798 /* ... */
801 ss_inplacemerge (T, PA , first , middle , last , depth);
802 }
803 /* ... */

Listing A.4. sssort (first part)

185

APPENDIX A DIVSUFSORT’S CODE

804 /* ... */
805 if(lastsuffix != 0) {
806 /* Insert last type B* suffix . */
807 saidx_t PAi [2]; PAi [0] = PA [*(first - 1)] , PAi [1] = n - 2;
808 for(a = first , i = *(first - 1);
809 (a<last) &&
809 ((*a <0) || (0< ss_compare (T ,&(PAi [0]) , PA +*a, depth)));
810 ++a) {
811 *(a - 1) = *a;
812 }
813 *(a - 1) = i;
814 }
815 }

Listing A.5. sssort (second part)

310 ss_mintrosort (const sauchar_t *T, const saidx_t *PA ,
311 saidx_t *first , saidx_t *last ,
312 saidx_t depth) {
313 # define STACK_SIZE SS_MISORT_STACKSIZE
314 struct { saidx_t *a, *b, c; saint_t d; } stack [STACK_SIZE];
315 const sauchar_t *Td;
316 saidx_t *a, *b, *c, *d, *e, *f;
317 saidx_t s, t;
318 saint_t ssize ;
319 saint_t limit ;
320 saint_t v, x = 0;

322 for(ssize = 0, limit = ss_ilg (last - first);;) {

324 if ((last - first) <= SS_INSERTIONSORT_THRESHOLD) {
325 #if 1 < SS_INSERTIONSORT_THRESHOLD // = 8
326 if (1 <(last - first)){ ss_insertionsort (T,PA ,first ,last , depth);}
327 # endif
328 STACK_POP (first , last , depth , limit);
329 continue ;
330 }

332 Td = T + depth ;
333 if(limit -- == 0){ ss_heapsort (Td , PA , first , {last - first);}
334 if(limit < 0) {
335 for(a = first + 1, v = Td[PA [* first]]; a < last; ++a) {
336 if ((x = Td[PA [*a]]) != v) {
337 if (1 < (a - first)) { break ; }
338 v = x;
339 first = a;
340 }
341 }
342 if(Td[PA [* first] - 1] < v) {
343 first = ss_partition (PA , first , a, depth);
344 }
345 if ((a - first) <= (last - a)) {
346 if (1 < (a - first)) {

186

A.2 SSSORT.C

347 STACK_PUSH (a, last , depth , -1);
348 last = a, depth += 1, limit = ss_ilg (a - first);
349 } else {
350 first = a, limit = -1;
351 }
352 } else {
353 if (1 < (last - a)) {
354 STACK_PUSH (first , a, depth + 1, ss_ilg (a - first));
355 first = a, limit = -1;
356 } else {
357 last = a, depth += 1, limit = ss_ilg (a - first);
358 }
359 }
360 continue ;
361 }

363 /* ... */

Listing A.6. ss_mintrosort (first part)

lp
363 /* choose pivot */
364 a = ss_pivot (Td , PA , first , last);
365 v = Td[PA [*a]];
366 SWAP (* first , *a);

368 /* partition */
369 for(b = first ; (++b < last) && ((x = Td[PA [*b]]) == v);) { }
370 if (((a = b) < last) && (x < v)) {
371 for (; (++b < last) && ((x = Td[PA [*b]]) <= v);) {
372 if(x == v) { SWAP (*b, *a); ++a; }
373 }
374 }
375 for(c = last; (b < --c) && ((x = Td[PA [*c]]) == v);) { }
376 if ((b < (d = c)) && (x > v)) {
377 for (; (b < --c) && ((x = Td[PA [*c]]) >= v);) {
378 if(x == v) { SWAP (*c, *d); --d; }
379 }
380 }
381 for (; b < c;) {
382 SWAP (*b, *c);
383 for (; (++b < c) && ((x = Td[PA [*b]]) <= v);) {
384 if(x == v) { SWAP (*b, *a); ++a; }
385 }
386 for (; (b < --c) && ((x = Td[PA [*c]]) >= v);) {
387 if(x == v) { SWAP (*c, *d); --d; }
388 }
389 }

Listing A.7. ss_mintrosort (second part)

187

APPENDIX A DIVSUFSORT’S CODE

391 if(a <= d) {
392 c = b - 1;

394 if ((s = a - first) > (t = b - a)) { s = t; }
395 for(e=first , f=b-s; 0<s; --s, ++e, ++f) {SWAP (*e, *f);}
396 if ((s = d - c) > (t = last - d - 1)) { s = t; }
397 for(e=b, f=last -s; 0<s; --s, ++e, ++f) {SWAP (*e, *f);}

399 a = first + (b - a), c = last - (d - c);
400 b = (v <= Td[PA [*a] -1]) ? a : ss_partition (PA , a, c, depth);

402 if ((a - first) <= (last - c)) {
403 if ((last - c) <= (c - b)) {
404 STACK_PUSH (b, c, depth + 1, ss_ilg (c - b));
405 STACK_PUSH (c, last , depth , limit);
406 last = a;
407 } else if ((a - first) <= (c - b)) {
408 STACK_PUSH (c, last , depth , limit);
409 STACK_PUSH (b, c, depth + 1, ss_ilg (c - b));
410 last = a;
411 } else {
412 STACK_PUSH (c, last , depth , limit);
413 STACK_PUSH (first , a, depth , limit);
414 first = b, last = c, depth += 1, limit = ss_ilg (c - b);
415 }
416 } else {
417 if ((a - first) <= (c - b)) {
418 STACK_PUSH (b, c, depth + 1, ss_ilg (c - b));
419 STACK_PUSH (first , a, depth , limit);
420 first = c;
421 } else if ((last - c) <= (c - b)) {
422 STACK_PUSH (first , a, depth , limit);
423 STACK_PUSH (b, c, depth + 1, ss_ilg (c - b));
424 first = c;
425 } else {
426 STACK_PUSH (first , a, depth , limit);
427 STACK_PUSH (c, last , depth , limit);
428 first = b, last = c, depth += 1, limit = ss_ilg (c - b);
429 }
430 }
431 } else {
432 limit += 1;
433 if(Td[PA [* first] - 1] < v) {
434 first = ss_partition (PA , first , last , depth);
435 limit = ss_ilg (last - first);
436 }
437 depth += 1;
438 }

Listing A.8. ss_mintrosort (third part)

188

A.2 SSSORT.C

139 static INLINE
140 saint_t
141 ss_compare (const sauchar_t *T,
142 const saidx_t *p1 , const saidx_t *p2 ,
143 saidx_t depth) {
144 const sauchar_t *U1 , *U2 , *U1n , *U2n;

146 for(U1 = T + depth + *p1 ,
147 U2 = T + depth + *p2 ,
148 U1n = T + *(p1 + 1) + 2,
149 U2n = T + *(p2 + 1) + 2;
150 (U1 < U1n) && (U2 < U2n) && (* U1 == *U2);
151 ++U1 , ++ U2) {
152 }

154 return U1 < U1n ?
155 (U2 < U2n ? *U1 - *U2 : 1) :
156 (U2 < U2n ? -1 : 0);
157 }

Listing A.9. ss_compare

165 static
166 void
167 ss_insertionsort (const sauchar_t *T, const saidx_t *PA ,
168 saidx_t *first , saidx_t *last , saidx_t depth) {
169 saidx_t *i, *j;
170 saidx_t t;
171 saint_t r;

173 for(i = last - 2; first <= i; --i) {
174 for(t=*i, j=i+1; 0<(r= ss_compare (T,PA+t,PA +*j, depth));) {
175 do { *(j - 1) = *j; } while ((++j < last) && (*j < 0));
176 if(last <= j) { break ; }
177 }
178 if(r == 0) { *j = ~*j; }
179 *(j - 1) = t;
180 }
181 }

Listing A.10. ss_insertionsort

189

APPENDIX A DIVSUFSORT’S CODE

A.3 TRSORT.C
563 for(ISAd = ISA + depth ; -n < *SA; ISAd += ISAd - ISA) {
564 first = SA;
565 skip = 0;
566 unsorted = 0;
567 do {
568 if ((t = * first) < 0) { first -= t; skip += t; }
569 else {
570 if(skip != 0) { *(first + skip) = skip; skip = 0; }
571 last = SA + ISA[t] + 1;
572 if (1 < (last - first)) {
573 budget . count = 0;
574 tr_introsort (ISA , ISAd , SA , first , last , & budget);
575 if(budget . count != 0) { unsorted += budget . count ; }
576 else { skip = first - last; }
577 } else if ((last - first) == 1) {
578 skip = -1;
579 }
580 first = last;
581 }
582 } while (first < (SA + n));
583 if(skip != 0) { *(first + skip) = skip; }
584 if(unsorted == 0) { break ; }
585 }

Listing A.11. trsort

262 static
263 void
264 tr_copy (saidx_t *ISA , const saidx_t *SA ,
265 saidx_t *first , saidx_t *a, saidx_t *b, saidx_t *last ,
266 saidx_t depth) {
267 /* sort suffixes of middle partition by using sorted
268 order of suffixes of left and right partition . */
269 saidx_t *c, *d, *e;
270 saidx_t s, v;

272 v = b - SA - 1;
273 for(c = first , d = a - 1; c <= d; ++c) {
274 if ((0 <= (s = *c - depth)) && (ISA[s] == v)) {
275 *++d = s;
276 ISA[s] = d - SA;
277 }
278 }
279 for(c = last - 1, e = d + 1, d = b; e < d; --c) {
280 if ((0 <= (s = *c - depth)) && (ISA[s] == v)) {
281 *--d = s;
282 ISA[s] = d - SA;
283 }
284 }
285 }

Listing A.12. tr_copy

190

A.3 TRSORT.C

325 static
326 void
327 tr_introsort (saidx_t *ISA , const saidx_t *ISAd ,
328 saidx_t *SA , saidx_t *first , saidx_t *last ,
329 trbudget_t * budget) {
330 /* ... */

319 for(ssize = 0, limit = tr_ilg (last - first);;) {

321 if(limit < 0) {
322 if(limit == -1) {
323 /* tandem repeat partition */
324 tr_partition (ISAd -incr ,first ,first ,last ,&a ,&b,last -SA -1);

326 /* update ranks */
327 if(a < last) {
328 for(c=first ,v=a-SA -1; c<a; ++c) {ISA [*c]=v;}
329 }
330 if(b < last) {
331 for(c=a,v=b-SA -1; c<b; ++c) {ISA [*c]=v;}
332 }

334 /* push */
335 if (1 < (b - a)) {
336 STACK_PUSH5 (NULL , a, b, 0, 0);
337 STACK_PUSH5 (ISAd - incr , first , last , -2, trlink);
338 trlink = ssize - 2;
339 }
340 if ((a - first) <= (last - b)) {
341 if (1 < (a - first)) {
342 STACK_PUSH5 (ISAd ,b,last , tr_ilg (last -b), trlink);
343 last = a, limit = tr_ilg (a - first);
344 } else if (1 < (last - b)) {
345 first = b, limit = tr_ilg (last - b);
346 } else {
347 STACK_POP5 (ISAd , first , last , limit , trlink);
348 }
349 } else {
350 if (1 < (last - b)) {
351 STACK_PUSH5 (ISAd ,first ,a, tr_ilg (a- first), trlink);
352 first = b, limit = tr_ilg (last - b);
353 } else if (1 < (a - first)) {
354 last = a, limit = tr_ilg (a - first);
355 } else {
356 STACK_POP5 (ISAd , first , last , limit , trlink);
357 }
358 }
359 } else if(limit == -2) {
360 /* tandem repeat copy */
361 a = stack [-- ssize].b, b = stack [ssize].c;
362 if(stack [ssize].d == 0) {
363 tr_copy (ISA , SA , first , a, b, last , ISAd - ISA);
364 } else {
365 if (0 <= trlink) { stack [trlink].d = -1; }

191

APPENDIX A DIVSUFSORT’S CODE

366 tr_partialcopy (ISA ,SA ,first ,a,b,last ,ISAd -ISA);
367 }
368 STACK_POP5 (ISAd , first , last , limit , trlink);
369 } else {
370 /* sorted partition */
371 /* ... */

424 }
425 continue ;
426 }
427 /* ...*

Listing A.13. tr_introsort

192

A.3 TRSORT.C

429 if ((last - first) <= TR_INSERTIONSORT_THRESHOLD) {
430 tr_insertionsort (ISAd , first , last);
431 limit = -3;
432 continue ;
433 }

435 if(limit -- == 0) {
436 tr_heapsort (ISAd , first , last - first);
437 for(a = last - 1; first < a; a = b) {
438 for(x=ISAd [*a],b=a -1;(first <=b)&&(ISAd [*b]==x);--b){*b=~*b;}
439 }
440 limit = -3;
441 continue ;
442 }

444 /* choose pivot */
445 a = tr_pivot (ISAd , first , last);
446 SWAP (* first , *a);
447 v = ISAd [* first];

449 /* partition */
450 tr_partition (ISAd , first , first + 1, last , &a, &b, v);
451 if ((last - first) != (b - a)) {
452 next = (ISA [*a] != v) ? tr_ilg (b - a) : -1;

454 /* update ranks */
455 for(c=first ,v=a-SA -1; c<a; ++c) {ISA [*c]= v;}
456 if(b<last) {for(c=a,v=b-SA -1; c<b; ++c) {ISA [*c]=v;}}

458 /* push */
459 if ((1 < (b - a)) && (trbudget_check (budget , b - a))) {
460 /* ... */

512 }
513 } else {
514 if(trbudget_check (budget , last - first)) {
515 limit = tr_ilg (last - first), ISAd += incr;
516 } else {
517 if (0 <= trlink) { stack [trlink].d = -1; }
518 STACK_POP5 (ISAd , first , last , limit , trlink);
519 }
520 }
521 }
522 # undef STACK_SIZE
523 }

Listing A.14. trsort

193

BIBLIOGRAPHY
[Abd+14] Ahmed Abdelhadi, AH Kandil, and Mohamed Abouelhoda. “Cloud-

Based Parallel Suffix Array Construction Based on MPI”. In: Middle
East Conference on Biomedical Engineering (MECBME). IEEE Com-
puter Society. 2014, pages 334–337.

[AN08] Donald A. Adjeroh and Fei Nan. “Suffix Sorting via Shannon-Fano-
Elias Codes”. In: 2008 Data Compression Conference (DCC). IEEE
Computer Society, 2008, page 502.

[Arr+14] Diego Arroyuelo, Carolina Bonacic, Veronica Gil Costa, Mauricio Marín,
and Gonzalo Navarro. “Distributed Text Search Using Suffix Arrays”.
In: Parallel Comput. 40.9 (2014), pages 471–495.

[AV88] Alok Aggarwal and Jeffrey Scott Vitter. “The Input/Output Complexity
of Sorting and Related Problems”. In: Commun. ACM 31.9 (1988),
pages 1116–1127.

[Bab+15] Maxim A. Babenko, Pawel Gawrychowski, Tomasz Kociumaka, and Ta-
tiana A. Starikovskaya. “Wavelet Trees Meet Suffix Trees”. In: 26th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). Soci-
ety for Industrial and Applied Mathematics, 2015, pages 572–591.

[Bad+16] Johannes Bader, Simon Gog, and Matthias Petri. “Practical Variable
Length Gap Pattern Matching”. In: 15th International Symposium
on Experimental Algorithms (SEA). Volume 9685. Lecture Notes in
Computer Science. Springer, 2016, pages 1–16.

[Bah+19a] Johannes Bahne, Nico Bertram, Marvin Böcker, Jonas Bode, Hermann
Foot, Florian Grieskamp, Marvin Löbel, Oliver Magiera, Rosa Pink,
David Piper, and Christopher Poeplau. Abschlussbericht der Projekt-
gruppe 616. 2019.

[Bah+19b] Johannes Bahne, Nico Bertram, Marvin Böcker, Jonas Bode, Johannes
Fischer, Hermann Foot, Florian Grieskamp, Florian Kurpicz, Marvin Lö-
bel, Oliver Magiera, Rosa Pink, David Piper, and Christopher Poeplau.
“SACABench: Benchmarking Suffix Array Construction”. In: 26th In-
ternational Symposium on String Processing and Inforation Retrieval
(SPIRE). Volume 11811. Lecture Notes in Computer Science. Springer,
2019, pages 392–406.

195

BIBLIOGRAPHY

[Bai16] Uwe Baier. “Linear-time Suffix Sorting - A New Approach for Suffix
Array Construction”. In: 27th Annual Symposium on Combinatorial
Pattern Matching (CPM). Volume 54. Leibniz International Proceedings
in Informatics. Schloss Dagstuhl - Leibniz Center for Informatics, 2016,
23:1–23:12.

[Ben+05] David Benoit, Erik D. Demaine, J. Ian Munro, Rajeev Raman, Venkatesh
Raman, and S. Srinivasa Rao. “Representing Trees of Higher Degree”.
In: Algorithmica 43.4 (2005), pages 275–292.

[Bha+91] P. C. P. Bhatt, Krzysztof Diks, Torben Hagerup, V. C. Prasad, Tomasz
Radzik, and Sanjeev Saxena. “Improved Deterministic Parallel Integer
Sorting”. In: Inf. Comput. 94.1 (1991), pages 29–47.

[Bin+16a] Timo Bingmann, Johannes Fischer, and Vitaly Osipov. “Inducing Suffix
and LCP Arrays in External Memory”. In: ACM J. Exp. Algorithmics
21.1 (2016), 2.3:1–2.3:27.

[Bin+16b] Timo Bingmann, Michael Axtmann, Emanuel Jöbstl, Sebastian Lamm,
Huyen Chau Nguyen, Alexander Noe, Sebastian Schlag, Matthias
Stumpp, Tobias Sturm, and Peter Sanders. “Thrill: High-performance
algorithmic distributed batch data processing with C++”. In: 2016
IEEE International Conference on Big Data (BigData). IEEE Computer
Society, 2016, pages 172–183.

[Bin+17] Timo Bingmann, Andreas Eberle, and Peter Sanders. “Engineering
Parallel String Sorting”. In: Algorithmica 77.1 (2017), pages 235–286.

[Bin+18] Timo Bingmann, Simon Gog, and Florian Kurpicz. “Scalable Construc-
tion of Text Indexes with Thrill”. In: 2018 IEEE International Confer-
ence on Big Data (BigData). IEEE Computer Society, 2018, pages 634–
643.

[Bin+20] Timo Bingmann, Peter Sanders, andMatthias Schimek. “Communication-
Efficient String Sorting”. In: Computing Research Repository (CoRR)
arXiv:2001.08516 (2020). Full version to appear at IPDPS 2020.

[Bin12] Timo Bingmann. pDCX, https: // github. com/ bingmann/ pDCX .
2012.

[Bin18] Timo Bingmann. “Scalable String and Suffix Sorting: Algorithms, Tech-
niques, and Tools”. PhD thesis. Karlsruhe Institute of Technology,
Germany, 2018.

[BK03] Stefan Burkhardt and Juha Kärkkäinen. “Fast Lightweight Suffix Array
Construction and Checking”. In: 14th Annual Symposium on Combina-
torial Pattern Matching (CPM). Volume 2676. LNCS. Springer, 2003,
pages 55–69.

196

https://github.com/bingmann/pDCX

BIBLIOGRAPHY

[Ble+96] Guy E. Blelloch, Charles E. Leiserson, Bruce M. Maggs, C. Greg Plax-
ton, Stephen J. Smith, and Marco Zagha. “A Comparison of Sorting
Algorithms for the Connection Machine CM-2”. In: Commun. ACM
39.12es (1996), pages 273–297.

[BS97] Jon Louis Bentley and Robert Sedgewick. “Fast Algorithms for Sort-
ing and Searching Strings”. In: 8th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA). Society for Industrial and Applied
Mathematics, 1997, pages 360–369.

[BW94] Michael Burrows and David John Wheeler. A Block-Sorting Lossless
Data Compression Algorithm. Technical report. Digital Equipment
Corporation, 1994.

[Cas+08] Henri Casanova, Arnaud Legrand, and Yves Robert. Parallel Algorithms.
CRC Press, 2008.

[CF02] Andreas Crauser and Paolo Ferragina. “A Theoretical and Experimental
Study on the Construction of Suffix Arrays in External Memory”. In:
Algorithmica 32.1 (2002), pages 1–35.

[Cla+11] Francisco Claude, Patrick K. Nicholson, and Diego Seco. “Space Effi-
cient Wavelet Tree Construction”. In: 18th International Symposium
on String Processing and Inforation Retrieval (SPIRE). Volume 7024.
Lecture Notes in Computer Science. Springer, 2011, pages 185–196.

[Cla+15] Francisco Claude, Gonzalo Navarro, and Alberto Ordóñez Pereira. “The
Wavelet Matrix: An Efficient Wavelet Tree for Large Alphabets”. In:
Inf. Syst. 47 (2015), pages 15–32.

[Cla97] David Clark. “Compact Pat Trees”. PhD thesis. 1997.
[Cli05] Raphaël Clifford. “Distributed Suffix Trees”. In: J. Discrete Algorithms

3.2-4 (2005), pages 176–197.
[CN08] Francisco Claude and Gonzalo Navarro. “Practical Rank/Select Queries

over Arbitrary Sequences”. In: 15th International Symposium on String
Processing and Inforation Retrieval (SPIRE). Volume 5280. Lecture
Notes in Computer Science. Springer, 2008, pages 176–187.

[Dem+08a] Roman Dementiev, Juha Kärkkäinen, Jens Mehnert, and Peter Sanders.
“Better External Memory Suffix Array Construction”. In: ACM J. Exp.
Algorithmics 12 (2008), 3.4:1–3.4:24.

[Dem+08b] Roman Dementiev, Lutz Kettner, and Peter Sanders. “STXXL: Stan-
dard Template Library for XXL Data Sets”. In: Software: Practice and
Experience 38.6 (2008), pages 589–637.

[Din+20] Patrick Dinklage, Johannes Fischer, and Florian Kurpicz. “Distributed
Wavelet Tree Construction”. In: 22nd Workshop on Algorithm Engi-
neering and Experiments (ALENEX). Society for Industrial and Applied
Mathematics, 2020, pages 214–228.

197

BIBLIOGRAPHY

[Din19] Patrick Dinklage. “Translating Between Wavelet Tree and Wavelet Ma-
trix Construction”. In: Prague Stringology Conference (PSC). Depart-
ment of Theoretical Computer Science, Faculty of Information Technol-
ogy, Czech Technical University in Prague, 2019, pages 126–135.

[DK13] Mrinal Deo and Sean Keely. “Parallel Suffix Array and Least Common
Prefix for the GPU”. In: ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP). Association for Computing
Machinery, 2013, pages 197–206.

[EK19] Jonas Ellert and Florian Kurpicz. “Parallel External Memory Wavelet
Tree and Wavelet Matrix Construction”. In: 26th International Sym-
posium on String Processing and Inforation Retrieval (SPIRE). Vol-
ume 11811. Lecture Notes in Computer Science. Springer, 2019,
pages 407–416.

[FA15] Patrick Flick and Srinivas Aluru. “Parallel Distributed Memory Con-
struction of Suffix and Longest Common Prefix Arrays”. In: Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis (SC). Association for Computing Machinery, 2015, 16:1–
16:10.

[FA19] Patrick Flick and Srinivas Aluru. “Distributed Enhanced Suffix Arrays:
Efficient Algorithms for Construction and Querying”. In: Proceedings of
the International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC 2019, Denver, Colorado, USA, November
17-19, 2019. Association for Computing Machinery, 2019, 72:1–72:17.

[Far97] Martin Farach. “Optimal Suffix Tree Construction with Large Alpha-
bets”. In: 38th IEEE Annual Symposium on Foundations of Computer
Science (FOCS). IEEE Computer Society, 1997, pages 137–143.

[Fer+09] Paolo Ferragina, Raffaele Giancarlo, and Giovanni Manzini. “The Myr-
iad Virtues of Wavelet Trees”. In: Inf. Comput. 207.8 (2009), pages 849–
866.

[FG15] Johannes Fischer and Pawel Gawrychowski. “Alphabet-Dependent
String Searching with Wexponential Search Trees”. In: 26th Annual
Symposium on Combinatorial Pattern Matching (CPM). Volume 9133.
Lecture Notes in Computer Science. Springer, 2015, pages 160–171.

[FG99] Paolo Ferragina and Roberto Grossi. “The String B-tree: A New Data
Structure for String Search in External Memory and Its Applications”.
In: J. ACM 46.2 (1999), pages 236–280.

[FH11] Johannes Fischer and Volker Heun. “Space-Efficient Preprocessing
Schemes for Range Minimum Queries on Static Arrays”. In: SIAM J.
Comput. 40.2 (2011), pages 465–492.

198

BIBLIOGRAPHY

[Fis+17] Johannes Fischer, Florian Kurpicz, and Peter Sanders. “Engineering a
Distributed Full-Text Index”. In: 19th Workshop on Algorithm Engi-
neering and Experiments (ALENEX). Society for Industrial and Applied
Mathematics, 2017, pages 120–134.

[Fis+18] Johannes Fischer, Florian Kurpicz, and Marvin Löbel. “Simple, Fast and
Lightweight Parallel Wavelet Tree Construction”. In: 20th Workshop
on Algorithm Engineering and Experiments (ALENEX). Society for
Industrial and Applied Mathematics, 2018, pages 9–20.

[Fis11] Johannes Fischer. “Inducing the LCP-Array”. In: 12th International
Symposium on Algorithms and Data Structures (WADS). Volume 6844.
Lecture Notes in Computer Science. Springer, 2011, pages 374–385.

[FK17] Johannes Fischer and Florian Kurpicz. “Dismantling DivSufSort”. In:
Prague Stringology Conference (PSC). Department of Theoretical Com-
puter Science, Faculty of Information Technology, Czech Technical Uni-
versity in Prague, 2017, pages 62–76.

[FK19] Johannes Fischer and Florian Kurpicz. “Lightweight Distributed Suffix
Array Construction”. In: 21st Workshop on Algorithm Engineering and
Experiments (ALENEX). Society for Industrial and Applied Mathemat-
ics, 2019, pages 27–38.

[FL99] Paolo Ferragina and Fabrizio Luccio. “String Search in Coarse-Grained
Parallel Computers”. In: Algorithmica 24.3-4 (1999), pages 177–194.

[FM05] Paolo Ferragina and Giovanni Manzini. “Indexing Compressed Text”.
In: J. ACM 52.4 (2005), pages 552–581.

[FN05] Paolo Ferragina and Gonzalo Navarro. Pizza & Chili Corpus, http:
// pizzachili. dcc. uchile. cl/ index. html . 2005.

[FS+17] José Fuentes-Sepúlveda, Erick Elejalde, Leo Ferres, and Diego Seco.
“Parallel Construction of Wavelet Trees on Multicore Architectures”. In:
Knowl. Inf. Syst. 51.3 (2017), pages 1043–1066.

[FS17] Paulo G. S. da Fonseca and Israel B. F. da Silva. “Online Construction
of Wavelet Trees”. In: 16th International Symposium on Experimental
Algorithms (SEA). Volume 75. Leibniz International Proceedings in
Informatics. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017,
16:1–16:14.

[Fut+01] Natsuhiko Futamura, Srinivas Aluru, and Stefan Kurtz. “Parallel Suffix
Sorting”. In: Electrical Engineering and Computer Science 64 (2001).

[GO11] Simon Gog and Enno Ohlebusch. “Fast and Lightweight LCP-Array
Construction Algorithms”. In: 13th Workshop on Algorithm Engineer-
ing and Experiments (ALENEX). Society for Industrial and Applied
Mathematics, 2011, pages 25–34.

199

http://pizzachili.dcc.uchile.cl/index.html
http://pizzachili.dcc.uchile.cl/index.html

BIBLIOGRAPHY

[Gog+14a] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. “From
Theory to Practice: Plug and Play with Succinct Data Structures”.
In: 13th International Symposium on Experimental Algorithms (SEA).
Volume 8504. Lecture Notes in Computer Science. Springer, 2014,
pages 326–337.

[Gog+14b] Simon Gog, Alistair Moffat, J. Shane Culpepper, Andrew Turpin, and
Anthony Wirth. “Large-Scale Pattern Search Using Reduced-Space On-
Disk Suffix Arrays”. In: IEEE Trans. Knowl. Data Eng. 26.8 (2014),
pages 1918–1931.

[Gog+19] Simon Gog, Juha Kärkkäinen, Dominik Kempa, Matthias Petri, and
Simon J. Puglisi. “Fixed Block Compression Boosting in FM-Indexes:
Theory and Practice”. In: Algorithmica 81.4 (2019), pages 1370–1391.

[Gon+92] Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. “New
Indices for Text: Pat Trees and Pat Arrays”. In: Information Retrieval:
Data Structures & Algorithms. 1992, pages 66–82.

[Got17] Keisuke Goto. “Optimal Time and Space Construction of Suffix Ar-
rays and LCP Arrays for Integer Alphabets”. In: Computing Research
Repository (CoRR) arXiv:1703.01009 (2017).

[Gro+03] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. “High-Order
Entropy-Compressed Text Indexes”. In: 14th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA). Society for Industrial and
Applied Mathematics. 2003, pages 841–850.

[Gro+11] Roberto Grossi, Jeffrey Scott Vitter, and Bojian Xu. “Wavelet Trees:
From Theory to Practice”. In: 1st International Conference on Data
Compression, Communications and Processing (CCP). IEEE Computer
Society, 2011, pages 210–221.

[Hag98] Torben Hagerup. “Sorting and Searching on the Word RAM”. In:
15th Annual Symposium on Theoretical Aspects of Computer Science
(STACS). Volume 1373. Lecture Notes in Computer Science. Springer,
1998, pages 366–398.

[Hon+09] Wing-Kai Hon, Kunihiko Sadakane, and Wing-Kin Sung. “Breaking a
Time-and-Space Barrier in Constructing Full-Text Indices”. In: SIAM
J. Comput. 38.6 (2009), pages 2162–2178.

[Huf52] David A. Huffman. “A Method for the Construction of Minimum-
Redundancy Codes”. In: Proceedings of the IRE 40.9 (1952), pages 1098–
1101.

[IT99] Hideo Itoh and Hozumi Tanaka. “An Efficient Method for in Memory
Construction of Suffix Arrays”. In: 6th International Symposium on
String Processing and Inforation Retrieval (SPIRE). IEEE Computer
Society, 1999, pages 81–88.

200

BIBLIOGRAPHY

[Jac89] Guy Jacobson. “Space-efficient Static Trees and Graphs”. In: 30th
IEEE Annual Symposium on Foundations of Computer Science (FOCS).
IEEE Computer Society, 1989, pages 549–554.

[JáJ92] Joseph JáJá. An Introduction to Parallel Algorithms. Addison-Wesley,
1992.

[KA05] Pang Ko and Srinivas Aluru. “Space Efficient Linear Time Construction
of Suffix Arrays”. In: J. Discrete Algorithms 3.2-4 (2005), pages 143–
156.

[Kan18] Yusaku Kaneta. “Fast Wavelet Tree Construction in Practice”. In: 25th
International Symposium on String Processing and Inforation Retrieval
(SPIRE). Volume 11147. Lecture Notes in Computer Science. Springer,
2018, pages 218–232.

[Kas+01] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kun-
soo Park. “Linear-Time Longest-Common-Prefix Computation in Suffix
Arrays and Its Applications”. In: 12th Annual Symposium on Com-
binatorial Pattern Matching (CPM). Volume 2089. Lecture Notes in
Computer Science. Springer, 2001, pages 181–192.

[Kim+04] Dong Kyue Kim, Junha Jo, and Heejin Park. “A Fast Algorithm for
Constructing Suffix Arrays for Fixed-Size Alphabets”. In: 3rd Inter-
national Workshop on Experimental and Efficient Algorithms (WEA).
Volume 3059. Lecture Notes in Computer Science. Springer, 2004,
pages 301–314.

[Kim+05] Dong Kyue Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park. “Con-
structing Suffix Arrays in Linear Time”. In: J. Discrete Algorithms
3.2-4 (2005), pages 126–142.

[KK17] Juha Kärkkäinen and Dominik Kempa. “Engineering a Lightweight
External Memory Suffix Array Construction Algorithm”. In: Math.
Comput. Sci. 11.2 (2017), pages 137–149.

[KK19] Dominik Kempa and Tomasz Kociumaka. “String Synchronizing Sets:
Sublinear-Time BWT Construction and Optimal LCE Data Structure”.
In: 51st Annual ACM SIGACT Symposium on Theory of Computing
(STOC). Association for Computing Machinery, 2019, pages 756–767.

[KM99] S. Rao Kosaraju and Giovanni Manzini. “Compression of Low Entropy
Strings with Lempel-Ziv Algorithms”. In: SIAM J. Comput. 29.3 (1999),
pages 893–911.

[Knu14] Donald E. Knuth. The Art of Computer Programming: Combinatorial
Algorithms, Part 1. 5th. Addison-Wesley Professional, 2014.

[KR08] Juha Kärkkäinen and Tommi Rantala. “Engineering Radix Sort for
Strings”. In: 15th International Symposium on String Processing and
Inforation Retrieval (SPIRE). Volume 5280. Lecture Notes in Computer
Science. Springer, 2008, pages 3–14.

201

BIBLIOGRAPHY

[KS03] Juha Kärkkäinen and Peter Sanders. “Simple Linear Work Suffix Array
Construction”. In: 30th International Colloquium on Automata, Lan-
guages, and Programming (ICALP). Volume 2719. Lecture Notes in
Computer Science. Springer, 2003, pages 943–955.

[KS07] Fabian Kulla and Peter Sanders. “Scalable Parallel Suffix Array Con-
struction”. In: Parallel Comput. 33.9 (2007), pages 605–612.

[Kär+06] Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. “Linear Work
Suffix Array Construction”. In: J. ACM 53.6 (2006), pages 918–936.

[Kär+09] Juha Kärkkäinen, Giovanni Manzini, and Simon J. Puglisi. “Permuted
Longest-Common-Prefix Array”. In: 20th Annual Symposium on Com-
binatorial Pattern Matching (CPM). Volume 5577. Lecture Notes in
Computer Science. Springer, 2009, pages 181–192.

[Kär+15] Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. “Parallel
External Memory Suffix Sorting”. In: 16th Annual Symposium on Com-
binatorial Pattern Matching (CPM). Volume 9133. Lecture Notes in
Computer Science. Springer, 2015, pages 329–342.

[Kär+16] Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. “Lazy Lempel-
Ziv Factorization Algorithms”. In: ACM J. Exp. Algorithmics 21.1
(2016), 2.4:1–2.4:19.

[Kär+17] Juha Kärkkäinen, Dominik Kempa, Simon J. Puglisi, and Bella Zhukova.
“Engineering External Memory Induced Suffix Sorting”. In: 19th Work-
shop on Algorithm Engineering and Experiments (ALENEX). Society
for Industrial and Applied Mathematics, 2017, pages 98–108.

[Lab+17] Julian Labeit, Julian Shun, and Guy E. Blelloch. “Parallel Lightweight
Wavelet Tree, Suffix Array and FM-Index Construction”. In: J. Discrete
Algorithms 43 (2017), pages 2–17.

[Lao+18a] Bin Lao, Ge Nong, Wai Hong Chan, and Jing Yi Xie. “Fast In-Place
Suffix Sorting on a Multicore Computer”. In: IEEE Trans. Comput
67.12 (2018), pages 1737–1749.

[Lao+18b] Bin Lao, Ge Nong, Wai Hong Chan, and Yi Pan. “Fast Induced Sorting
Suffixes on a Multicore Machine”. In: J. Supercomput. 74.7 (2018),
pages 3468–3485.

[Li+18] Zhize Li, Jian Li, and Hongwei Huo. “Optimal In-Place Suffix Sorting”.
In: 2018 Data Compression Conference (DCC). IEEE Computer Society,
2018, page 422.

[LS07] N. Jesper Larsson and Kunihiko Sadakane. “Faster Suffix Sorting”. In:
Theor. Comput. Sci. 387.3 (2007), pages 258–272.

[Mak12] Christos Makris. “Wavelet trees: A survey”. In: Comput. Sci. Inf.
Syst. 9.2 (2012), pages 585–625.

202

BIBLIOGRAPHY

[Man04] Giovanni Manzini. “Two Space Saving Tricks for Linear Time LCP Array
Computation”. In: 9th Scandinavian Workshop on Algorithm Theory
(SWAT). Volume 3111. Lecture Notes in Computer Science. Springer,
2004, pages 372–383.

[McS+15] Frank McSherry, Michael Isard, and Derek Gordon Murray. “Scalability!
But at what COST?” In: HotOS15. USENIX Association, 2015.

[Meh84] Kurt Mehlhorn. Data Structures and Algorithms 1: Sorting and Search-
ing. Volume 1. EATCS Monographs on Theoretical Computer Science.
Springer, 1984.

[Met+16] Ahmed A Metwally, Ahmed H Kandil, and Mohamed Abouelhoda. “Dis-
tributed Suffix Array Construction Algorithms: Comparison of Two Al-
gorithms”. In: Cairo International Biomedical Engineering Conference
(CIBEC). IEEE Computer Society. 2016, pages 27–30.

[MF04] Giovanni Manzini and Paolo Ferragina. “Engineering a Lightweight
Suffix Array Construction Algorithm”. In: Algorithmica 40.1 (2004),
pages 33–50.

[MM93] Udi Manber and Eugene W. Myers. “Suffix Arrays: A New Method for
On-Line String Searches”. In: SIAM J. Comput. 22.5 (1993), pages 935–
948.

[MN06] Veli Mäkinen and Gonzalo Navarro. “Position-Restricted Substring
Searching”. In: 7th Latin American Symposium on Theoretical Infor-
matics (LATIN). Volume 3887. Lecture Notes in Computer Science.
Springer, 2006, pages 703–714.

[MN07] Veli Mäkinen and Gonzalo Navarro. “Rank and Select Revisited and
Extended”. In: Theor. Comput. Sci. 387.3 (2007), pages 332–347.

[Mor06] Yuta Mori. divsufsort, https: // github. com/ y-256/ libdivsufsort .
2006.

[Mor08] Yuta Mori. sais, https: // sites. google. com/ site/ yuta256/ sais .
2008.

[Mor68] Donald R. Morrison. “PATRICIA - Practical Algorithm To Retrieve In-
formation Coded in Alphanumeric”. In: J. ACM 15.4 (1968), pages 514–
534.

[MP07] Michael A. Maniscalco and Simon J. Puglisi. “An Efficient, Versatile
Approach to Suffix Sorting”. In: ACM J. Exp. Algorithmics 12 (2007),
1.2:1–1.2:23.

[MR01] J. Ian Munro and Venkatesh Raman. “Succinct Representation of Bal-
anced Parentheses and Static Trees”. In: SIAM J. Comput. 31.3 (2001),
pages 762–776.

203

https://github.com/y-256/libdivsufsort
https://sites.google.com/site/yuta256/sais

BIBLIOGRAPHY

[Mun+16] J. Ian Munro, Yakov Nekrich, and Jeffrey Scott Vitter. “Fast Construc-
tion of Wavelet Trees”. In: Theor. Comput. Sci. 638 (2016), pages 91–
97.

[Mus97] David R. Musser. “Introspective Sorting and Selection Algorithms”. In:
Software: Practice and Experience 27.8 (1997), pages 983–993.

[Mäk+04] Veli Mäkinen, Gonzalo Navarro, and Kunihiko Sadakane. “Advantages
of Backward Searching - Efficient Secondary Memory and Distributed
Implementation of Compressed Suffix Arrays”. In: 15th International
Symposium on Algorithms and Computation (ISAAC). Volume 3341.
Lecture Notes in Computer Science. Springer, 2004, pages 681–692.

[Mäk+15] Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, and Alexandru I.
Tomescu. Genome-Scale Algorithm Design: Biological Sequence Anal-
ysis in the Era of High-Throughput Sequencing. Cambridge University
Press, 2015.

[Na05] Joong Chae Na. “Linear-Time Construction of Compressed Suffix Ar-
rays Using o(n log n)-Bit Working Space for Large Alphabets”. In: 16th
Annual Symposium on Combinatorial Pattern Matching (CPM). Vol-
ume 3537. Lecture Notes in Computer Science. Springer, 2005, pages 57–
67.

[Nav+97] Gonzalo Navarro, Joao Paulo Kitajima, Berthier A. Ribeiro-Neto, and
Nivio Ziviani. “Distributed Generation of Suffix Arrays”. In: 8th Annual
Symposium on Combinatorial Pattern Matching (CPM). Volume 1264.
Lecture Notes in Computer Science. Springer, 1997, pages 102–115.

[Nav14] Gonzalo Navarro. “Wavelet Trees for All”. In: J. Discrete Algorithms
25 (2014), pages 2–20.

[Nav16] Gonzalo Navarro. Compact Data Structures - A Practical Approach.
Cambridge University Press, 2016.

[Non+11] Ge Nong, Sen Zhang, and Wai Hong Chan. “Two Efficient Algorithms
for Linear Time Suffix Array Construction”. In: IEEE Trans. Comput
60.10 (2011), pages 1471–1484.

[Non+15] Ge Nong, Wai Hong Chan, Sheng Qing Hu, and Yi Wu. “Induced
Sorting Suffixes in External Memory”. In: ACM Trans. Inf. Syst. 33.3
(2015), 12:1–12:15.

[Non13] Ge Nong. “Practical Linear-Time O(1)-Workspace Suffix Sorting for
Constant Alphabets”. In: ACM Trans. Inf. Syst. 31.3 (2013), page 15.

[NP13] Gonzalo Navarro and Alberto Ordóñez Pereira. “Compressing Huffman
Models on Large Alphabets”. In: 2013 Data Compression Conference
(DCC). IEEE Computer Society, 2013, pages 381–390.

[NS14] Gonzalo Navarro and Kunihiko Sadakane. “Fully Functional Static and
Dynamic Succinct Trees”. In: ACM Trans. Algorithms 10.3 (2014),
16:1–16:39.

204

BIBLIOGRAPHY

[NZ07] Ge Nong and Sen Zhang. “Optimal Lightweight Construction of Suffix
Arrays for Constant Alphabets”. In: 10th International Symposium on
Algorithms and Data Structures (WADS). Volume 4619. Lecture Notes
in Computer Science. Springer, 2007, pages 613–624.

[Oes16] Benedikt Oesing. Effiziente Erstellung von Waveletmatrizen (B. Sc.
Thesis in German). 2016. url: https://ls11-www.cs.tu-dortmund.
de/fischer/abschlussarbeiten/wavelet.

[Osi12] Vitaly Osipov. “Parallel Suffix Array Construction for Shared Memory
Architectures”. In: 19th International Symposium on String Processing
and Inforation Retrieval (SPIRE). Volume 7608. Lecture Notes in
Computer Science. Springer, 2012, pages 379–384.

[PS15] Jacopo Pantaleoni and Nuno Subtil. nvbio, https: // github. com/
NVlabs/ nvbio . 2015.

[Pug+07] Simon J. Puglisi, W. F. Smyth, and Andrew H. Turpin. “A Taxonomy
of Suffix Array Construction Algorithms”. In: ACM Comput. Surv. 39.2
(2007), article no. 4.

[Ram90] Rajeev Raman. “The Power of Collision: Randomized Parallel Algo-
rithms for Chaining and Integer Sorting”. In: 10th Foundations of
Software Technology and Theoretical Computer Science (FSTTCS). Vol-
ume 472. Lecture Notes in Computer Science. Springer, 1990, pages 161–
175.

[Rus+10] Luís M. S. Russo, Gonzalo Navarro, and Arlindo L. Oliveira. “Parallel
and Distributed Compressed Indexes”. In: 10th Annual Symposium on
Combinatorial Pattern Matching (CPM). Volume 6129. Lecture Notes
in Computer Science. Springer, 2010, pages 348–360.

[Sch19] Matthias Schimek. Distributed String Sorting Algorithms. Master’s
Thesis. 2019. url: https://publikationen.bibliothek.kit.edu/
1000098432.

[SD10] Jared T. Simpson and Richard Durbin. “Efficient Construction of an As-
sembly String Graph Using the FM-Index”. In: Bioinformatics [ISMB]
26.12 (2010), pages 367–373.

[Sed98] Robert Sedgewick. Algorithms in C - Parts 1-4: Fundamentals, Data
Structures, Sorting, Searching (3. Ed.) Addison-Wesley-Longman, 1998.

[Sew00] Julian Seward. “On the Performance of BWT Sorting Algorithms”. In:
2000 Data Compression Conference (DCC). IEEE Computer Society,
2000, pages 173–182.

[Shu15] Julian Shun. “Parallel Wavelet Tree Construction”. In: 2015 Data Com-
pression Conference (DCC). IEEE Computer Society, 2015, pages 63–
72.

205

https://ls11-www.cs.tu-dortmund.de/fischer/abschlussarbeiten/wavelet
https://ls11-www.cs.tu-dortmund.de/fischer/abschlussarbeiten/wavelet
https://github.com/NVlabs/nvbio
https://github.com/NVlabs/nvbio
https://publikationen.bibliothek.kit.edu/1000098432
https://publikationen.bibliothek.kit.edu/1000098432

BIBLIOGRAPHY

[Shu17] Julian Shun. “Improved Parallel Construction of Wavelet Trees and
Rank/Select Structures”. In: 2017 Data Compression Conference
(DCC). IEEE Computer Society, 2017, pages 92–101.

[Sin38] James Singer. “A Theorem in Finite Projective Geometry and Some
Applications to Number Theory”. In: Trans. Am. Math. Soc. 43.3
(1938), pages 377–385. issn: 0002-9947.

[SM09] Weidong Sun and Zongmin Ma. “Parallel Lexicographic Names Con-
struction with CUDA”. In: 15th IEEE International Conference on
Parallel and Distributed Systems (ICPADS). IEEE Computer Society,
2009, pages 913–918.

[SS07] Klaus-Bernd Schürmann and Jens Stoye. “An Incomplex Algorithm for
Fast Suffix Array Construction”. In: Software: Practice and Experience
37.3 (2007), pages 309–329.

[Tis11] German Tischler. “On Wavelet Tree Construction”. In: 22nd Annual
Symposium on Combinatorial Pattern Matching (CPM). Volume 6661.
Lecture Notes in Computer Science. Springer, 2011, pages 208–218.

[Val90] Leslie G. Valiant. “A Bridging Model for Parallel Computation”. In:
Commun. ACM 33.8 (1990), pages 103–111.

[Vis10] Uzi Vishkin. Thinking in Parallel: Some Basic Data-Parallel Algorithms
and Techniques. 2010.

[Wan+16] Leyuan Wang, Sean Baxter, and John D. Owens. “Fast Parallel Skew
and Prefix-Doubling Suffix Array Construction on the GPU”. In:
Concurrency and Computation: Practice and Experience 28.12 (2016),
pages 3466–3484.

206

	Title Page
	Introduction
	Our Contributions
	Basic Notations
	Considered Machine Models
	Parallel Random Access Memory Model
	Distributed Memory Model
	COST of Parallelization
	External Memory Model

	Experimental Setup
	Hardware
	Text Corpora

	Corresponding Publications
	Publications Contributing to this Dissertation

	Shared and External Memory Wavelet Tree Construction
	Overview of Wavelet Tree Constriction
	Preliminaries
	The Wavelet Tree
	The Wavelet Matrix
	From the Wavelet Tree to the Wavelet Matrix
	Related Work
	Sequential Wavelet Tree Construction Algorithms
	Parallel Wavelet Tree Construction Algorithms
	Further Wavelet Tree Construction Algorithms

	Engineering Wavelet Tree Construction
	Bottom-Up Computation of Histograms
	Sequential Construction
	Prefix Counting
	Prefix Sorting
	Adaption to the Wavelet Matrix
	Experimental Evaluation

	Shared Memory Construction
	Parallel Prefix Counting
	Parallel Prefix Sorting
	Domain Decomposition
	Adaption to the Wavelet Matrix
	Experimental Evaluation

	External Memory Construction
	Sequential Construction in Semi-External Memory
	Sequential Construction in External Memory
	Parallel Construction in External Memory
	Experimental Evaluation

	Huffman-shaped Wavelet Trees
	Huffman Codes for Wavelet Trees and Wavelet Matrices
	Huffman-shaped Wavelet Tree Construction Algorithms
	Experimental Evaluation

	Conclusion and Future Work

	Distributed Memory Text Index Construction
	An Excursion to Suffix Sorting in Main Memory
	Suffix Array Construction Algorithms
	Dismantling DivSufSort
	Classification of Suffixes
	Sorting of Sampled Suffixes
	Inducing of Suffixes
	Running Time and Memory Requirements

	Inducing the LCP array
	Computing the LCP Values of the C+-Suffixes
	Inducing LCP Values in Addition to the Suffix Array
	Special Cases during LCP Induction

	Experimental Evaluation
	Conclusion and Future Work

	Distributed Suffix Array Construction
	Preliminaries
	MPI: The Message Passing Interface
	Thrill: A Distributed Big Data Batch Processing Framework

	Distributed Prefix Doubling
	Prefix Doubling in Thrill
	Prefix Doubling in MPI

	Distributed Recursive Suffix Sorting
	Distributed Induced Copying
	Extended Classification of Suffixes
	General Overview
	Identifying Suffixes in Distributed Memory
	Sorting of Suffixes in Distributed Memory
	Inducing the Suffix Array
	Space and Time Requirements

	Distributed String Sorting
	Experimental Evaluation
	Evaluation of Distributed Suffix Sorting using Thrill
	Evaluation of Distributed Suffix Sorting using MPI
	Evaluation of Distributed String Sorting

	Conclusion and Future Work

	The Distributed Patricia Trie
	Related Work
	Preliminaries
	Tries
	Succinct Data Structures

	Distributed Patricia Trie
	Construction of the Distributed Patricia Trie
	Querying a Distributed Index

	Experimental Evaluation
	Conclusion and Future Work

	DivSufSort's Code
	divsufsort.c
	sssort.c
	trsort.c

	Bibliography

