
Bit-Parallel (Compressed) Wavelet Tree Construction

Patrick Dinklage∗, Johannes Fischer∗, Florian Kurpicz†, and Jan-Philipp Tarnowski∗

∗TU Dortmund University †Karlsruhe Institute of Technology
Otto-Hahn-Str. 14 Am Fasanengarten 5

Dortmund, 44227, Germany Karlsruhe, 76131, Germany
first.last@cs.tu-dortmund.de kurpicz@kit.edu

Abstract

The wavelet tree is a data structure that indexes a text over an integer alphabet for efficient
rank and select queries. Using the Huffman encoding, it can be stored in zero-order entropy-
compressed space. We present a highly engineered open source implementation of an efficient
sequential construction algorithm that makes use of bit parallelism via vector instructions.
On hardware featuring ultrawide registers of up to 512 bits, it outperforms the currently
fastest known practical sequential construction algorithms.

1 Introduction and Contributions

Wavelet trees are an integral building block for many compressed text indices, e.g., the
FM-index [7] and the r-index [9]. Further applications include but are not limited to
compression and computational geometry. We present the currently fastest sequential
wavelet tree construction algorithm: the first open source implementation of the
O
(
n lg σ/

√
lg n

)
-time construction algorithm due [1, 14]. While it has already been

implemented by Kaneta [13], their source code is not publicly available. Further more,
our implementation supports ultrawide registers up to 512 bits. Using a common
baseline algorithm, we can conclude that these ultrawide registers allow for a speedup
of up to 2.5 compared with Kaneta’s implementation. We extend the algorithm to also
construct the Huffman-shaped wavelet tree and show that it outperforms the fastest
practical algorithms known to date. Our results apply as well to the wavelet matrix [3],
a popular alternative representation of the wavelet tree.

2 Preliminaries

Let T ∈ Σn be the input string of length n over an integer alphabet Σ = [0, σ) of
size σ ≤ n. For i, j ∈ [0, n) and i ≤ j, we denote by T [i] the i-th character in T
and by T [i..j] the substring of T starting at position i and ending at position j, both
included. For a ∈ Σ and i ∈ N, we define ranka(T, i) to be the number of occurrences
of a in T [0..i]. For convenience, we say ranka(T) = ranka(T, n). The inverse operation,
selecta(T, k) for k ≥ 1, returns the position in T of the k-th occurrence of a. We call a
string B ∈ {0, 1}∗ over the binary alphabet a bit vector. We argue about the running
times of algorithms using the word RAM model of computation, allowing access to
words of size w = Ω(lg n) bits in constant time. By default, logarithms are base-two.

In the word RAM, we can pack up to N = ⌊w/τ⌋ subwords of size τ ≤ w bits in a
word and access them individually in constant time. For simplicity, we assume that τ

first.last@cs.tu-dortmund.de
kurpicz@kit.edu

00 · · · 0 · · · 1 · · · 11 · · · 01

1 19 32 45 63 64 2 46

0 0 1 1 0 1 0 1

c⃗i (8 bytes)

x⃗i (64 bits)

y⃗i (8 bits)

Figure 1: Example of the bit shuffle instruction with selection vector c⃗ for the i-th
64-bit block of the input vector x⃗, producing the i-th 8-bit block of the result vector y⃗.

divides w and thus N is an integer. This notion can be extended to a packed list : an
array of M subwords can be packed into ⌈Mτ/w⌉ consecutive words with constant-time
subword access. For example, we can store T in a packed list of ⌈n⌈lg σ⌉/w⌉, where
each subword is a character encoded using ⌈lg σ⌉ bits.

Advanced CPU Instructions. In the following, we introduce advanced instructions
featured by modern CPUs that we use in this work. For a technical documentation, we
refer to [12]. Given a word x, let xi denote the i-most significant bit of x for i ∈ [1, w].
We use the following commonly available instructions on words:

• Population Count (popcount): Return rank1(x) =
∑w

i=1 xi.

• Bit Extract (pext): Filters the bits from x marked by a selection bitmask b and
stores them consecutively in the result word y such that

yi :=

{
xselect1(b,i) if rank1(b) ≥ i

0 otherwise
, for i ∈ [1, w].

We can also treat a word as a vector x⃗ = (x1, x2, . . . , xN) of packed τ -bit subwords
x1 to xN and use the following vector instructions from the AVX-512 instruction sets:

• Parallel Compare (vpcmp): Given two vectors x⃗ = (x1, . . . , xN) and y⃗ = (y1, . . . , yN)
and a binary comparison operator ⪯, computes z⃗ ∈ {0, 1}N with zi = 1 iff xi ⪯ yi.

• Compress (vpcompress): Filters subwords from x⃗ = (x1, . . . , xN) according to the

selection mask b⃗′ ∈ {0, 1}N , similar to pext, but for subwords instead of bits.

• Bit Shuffle (vpshufbit): Gathers w/8 bits from x⃗. We partition x⃗ into 64-bit blocks
such that x⃗ = (x⃗1, . . . , x⃗w/64) with x⃗i ∈ {0, 1}64 for i ∈ [1, w/64]. The selection
vectors c⃗i ∈ [1, 64]8 state 8 positions of bits to be gathered, in that order, from x⃗i

into the result block y⃗i. Fig. 1 shows an example. This is done in parallel for all
w/64 blocks and the result is packed into the output vector y⃗ ∈ {0, 1}w/8.

• Permute (pshufb / vperm): Permutes the subwords of x⃗ = (x1, . . . , xN) according
to the vector s⃗ = (s1, · · · , sN) ∈ {1, 64}N of bytes to vector y⃗ := (xs1 , . . . , xsN).

wavelet tree

101000101100

aele ee

0111011

a

10
eleee

01000

wvttr

11000

ttr

110

wv

10B2

B1

B0

(a) Binary wavelet tree of height ⌈lg σ⌉ = 3.
Each level stores exactly n = 12 bits.

wavelet tree

000111101011

wav r

00101

wa

100

a

01

vr

01

elettee

1010011

ltt

011

B3

B2

B1

B0

(b) Huffman-shaped wavelet tree, with gaps
(missing nodes) occurring only on the right.

(c) Listing of codes used for the wavelet trees.
Character a e l r t v w

Binary code (3 bits) 000 001 010 011 100 101 110 111

Inverse canonical Huffman code 0001 0000 11 100 011 101 010 001

Figure 2: Wavelet trees for example text T = wavelet tree over alphabet Σ =
{ , a, e, l, r, t, v, w} (σ = 8). The texts are not stored and shown merely for orientation.
A character’s code can be restored by following the corresponding root-to-leaf path.
The levelwise representations (bit vectors B) are obtained by concatenating the bits
on each level from left to right along the dotted lines.

Wavelet Trees. The wavelet tree [10] is a representation of T that also serves as a
rank and select index on T . It is a binary tree defined recursively as follows. The root
v on level ℓ = 0 consists of the bit vector Bv ∈ {0, 1}|T | that contains the (ℓ+ 1)-most
significant bit of each character in T , that is, Bv[i] := enc(T [i])[ℓ] for every i ∈ [0, |T |)
and a bit encoding enc : Σ → {0, 1}∗ of the characters of Σ. Let T0 be the subsequence
of T constructed by filtering only the characters at positions i with Bv[i] = 0. The left
subtree of v (on level ℓ+ 1) is defined recursively for T0, or empty if T0 contains only a
single distinct character. Analogously, we define T1 and the right subtree of v.

Let a ∈ Σ. By construction, the length-ℓ prefix of enc(a) encodes the path from
the root to the node representing a on level ℓ (a 0- or 1-bit for a left or right edge,
respectively). We only store the bit vectors Bv at each node. Since Σ = [0, σ), we
can encode each character using its ⌈lg σ⌉-bit binary code. The wavelet tree then has
height ⌈lg σ⌉. On every level, the number of stored bits sums up to n, such that the
wavelet tree stores n⌈lg σ⌉ bits in total. Fig. 2a shows an example.

In the levelwise wavelet tree, we concatenate the bit vectors on each level ℓ ∈
[0, ⌈lg σ⌉) to form a consecutive bit vector Bℓ of exactly n bits. The tree’s structure is
retained implicitly, and we can save O (σ) words of memory that we would require for
pointers between nodes and their children (at the cost of a negligible time and space
overhead for answering queries, which we do not consider here). The borders array
Kℓ for level ℓ is an important tool for constructing directly the levelwise wavelet tree
(used, e.g., in [4]). It holds the positions in Bℓ of the first bits labeling the 2ℓ nodes on
that level. As an example, the borders array for level 2 in Fig. 2a is K2 = [0, 2, 7, 10].

The wavelet tree can be constructed in time O
(
n lg σ/

√
lg n

)
[1, 14] through use of

1011 0101 0001 0010 1010 0110 0011 1101 0100 0100 0011 1110T

⌈lg σ⌉ bits

0101 1010 1101 0011S

τ bits

Figure 3: Extracting τ -bit blocks (underlined) from T to S for α = 1 and τ = 4.

packed lists. In practice, this can be implemented efficiently by making use of vector
instructions [13]. We give a detailed description of our approach in Sect. 3.

Huffman-shaped Wavelet Trees. When using Huffman codes [11] to encode
characters, the wavelet tree assumes the shape of the Huffman tree for T . The number
of total bits stored is then n⌈H0(T)⌉, with H0(T) =

∑
α∈Σ

nα

n
lg n

nα
denoting the zeroth-

order entropy of T . The depth of a subtree varies depending on the code lengths, such
that there may be gaps (empty nodes) in the wavelet tree. As a result, bit vectors are
no longer consecutive in the levelwise representation, which complicates navigation
in it. We can use canonical Huffman codes [15] to establish that root-to-leaf paths
are arranged in non-decreasing order of their lengths from left to right. By inverting
these codes, we force gaps to occur only on the right, such that the bit vectors in the
levelwise representation remain consecutive. Fig. 2b shows an example.

3 Levelwise Wavelet Tree Construction

In this section, we describe our algorithm for constructing the levelwise wavelet tree
of T based on the ⌈lg σ⌉-bit binary encoding of characters. Our strategy follows that
of [1, 14], aiming at a total construction time of O

(
n lg σ/

√
lg n

)
. We partition the

wavelet tree into ⌈⌈lg σ⌉/τ⌉ clusters of τ ∈ [1, ⌈lg σ⌉] consecutive levels. To that end,
cluster α covers levels ατ to ατ + τ − 1 of the wavelet tree, for α ∈ [0, ⌈lg σ⌉/τ). For
simplicity, we assume that τ divides ⌈lg σ⌉.

The general idea is to construct, for each cluster α, the τ corresponding bit vectors
Bατ to Bατ+τ−1 of the levelwise wavelet tree in time O (n). Our total construction time
is then O (n lg σ/τ), and choosing τ :=

√
lg n meets our target time. To achieve this,

we use packed lists and vector operations. We first extract from each character of T
the τ bits relevant for the cluster’s levels in time O (n) and store them in a packed list
S of nτ/w words. In τ passes, we then extract from S the relevant bits for the τ bit
vectors. Because S is packed, each pass takes time O (nτ/w), and thus we require time
O (nτ 2/w) = O (n) for all τ =

√
lg n passes. The greatest challenge lies in efficiently

maintaining S in order such that the relevant bits can be extracted in one scan per pass.
Further, in order to process the next cluster in a similar fashion, we need to account
for the reordering of the characters of T that occurs by descending τ levels. In the
following, we look at each step in more detail and consider suitable vector instructions.

Packed List Extraction. At the beginning of processing cluster α ∈ [0, ⌈lg σ⌉/τ),
we compute S by extracting the block of τ bits from ατ to ατ + τ − 1 from each
character of T as depicted in Fig. 3. This can be done in one scan taking time O (n).

Bit Extraction. We now process S in τ passes assuming the following invariant: at
the beginning of the t-th pass (t ∈ [0, τ − 1]) of processing the α-th cluster, the τ -bit
blocks in S are arranged so that Bατ+t of the levelwise wavelet tree can be computed
in one scan, extracting the t-most significant bit from each block in S. An example
is shown in Fig. 4a. Let t ∈ [0, τ − 1] be the current pass. Using the pext operation,
with a selection mask where only the t-most significant bit is set per block of τ bits,
we can extract w/τ bits at a time, taking claimed time O (nτ/w). In practice, pext
is limited to 64-bit words. For larger words, we set τ := 8 and use vpshufbit with
selection mask c⃗i = (t, 2t, . . . , 8t) for every i ∈ [1, w/64] to get the same result.

Borders. We need to rearrange S to maintain the invariant for computing the next
level ατ + t+ 1 in the next pass. For this, we need the borders array Kατ+t+1. We can
compute on the fly by counting the number of 0-bits written to Bατ+t within each range
defined by the current borders array Kατ+t (initially, K0 = [0]). To stay within our
time bound, we use the population count instruction to count w/τ bits simultaneously.

List Splitting. Consider the v-th node on level ατ + t of the wavelet tree and let
Bατ+t[i..j] (with 0 ≤ i ≤ j < n) be the range of bits that label v. We can read
i = Kατ+t[v] from the borders array. By construction, the range [i, j] also labels the
two children of v on the next level. In particular, if zv = rank0(Bατ+t[i..j]), then the
left child of v is labeled by Bατ+t+1[i..i+zv−1] and the right child by Bατ+t+1[i+zv..j].
Observe how zv = Kατ+t+1[2v + 1]−Kατ+t+1[2v] can be computed directly from the
next level’s borders array that we already have available. To maintain the invariant
stated earlier, we stably sort the blocks of S into the two child ranges according to
their t-th bits. We refer to this process as list splitting. Fig. 4b shows an example.

Kaneta [13] considered using pshufb and pext for list splitting. The use of pshufb
requires, for efficiently computing the corresponding selection vectors, a lookup table
of size 2w/τ , which is infeasible for large words of up to 512 bits. Furthermore, pext is
limited to 64-bit words. For large words and τ := 8, we use vpcompress with a side
benefit: the selection mask for the right child is given directly the bits written to Bατ+t

and does not need to be computed separately. For the left child, it is simply inverted.
Using these vector operations, we split w/τ blocks simultaneously. Each operation

needs to be executed twice: once for the left child of v and a second time for the
right. This takes time O (nτ/w). However, it is crucial to see that we process ranges
pertaining to nodes of the wavelet tree. The number of blocks labeling a node may not
be a multiple of w, and if this is the case, we have to process one additional incomplete
block (in constant time). Since there are most σ nodes on any level of the wavelet tree,
this requires additional time O (σ). The total time required for a list splitting is thus
O (σ + nτ/w) = O (nτ/w) [1, 13].

0101 1010 1101 0011S

τ bits

0 1 0 1Bατ+t

1 bit

(a) Bit extraction, writing the t-th bit (un-
derlined) from each block of S to Bατ+t.

0101 1010 1101 0011S

τ bits

i

0101 1101 1010 0011S′

i i+ zv

(b) List splitting, stably sorting the blocks
of S according to their t-th bits (under-
lined) to target positions i (0-bits) and
i+ zv (1-bits) in S′.

Figure 4: Bit extraction and list splitting for level ατ + t with τ = 4 and t = 2.

Text Reshuffling. In preparation to process the next cluster, to maintain our
invariant, we need to rearrange the characters of T to account for descending τ levels
in the wavelet tree. Recall how the alphabet at a node v on level ℓ is defined by the
encoding path(v). Recursing into the two children of v by appending a bit to path(v)
corresponds to stably sorting the characters of T by the ℓ-th bit in their binary encoding
(list splitting). When descending τ levels at once, this corresponds to stably sorting
the characters according to the relevant blocks of τ bits. In our case, advancing to the
next cluster means we descend from level ατ to ατ + τ , and thus we stably sort T
according to bits ατ to ατ + τ − 1 of each character.

This is similar to the list splitting step, with the difference that we now split into
2τ child ranges instead than just two. The boundaries are given by the borders array
Kατ+τ that we already computed. Further, the τ bits from ατ to ατ + τ − 1 of each
character address its corresponding child range.

Therefore, all that is left to do is scan over T and move each character to their
bucket by extracting the relevant bits in constant time each using word operations.
This is mostly similar to the packed list extraction and can be done in time O (n).

Working Space. Our algorithm requires n⌈lg σ⌉ bits of working space for the text
T , nτ bits for the packed list S and σ⌈lg n⌉ bits for the borders array Kατ+t. For each,
we need two buffers: one for reading the current state and the other for writing the
next. In total, we require 2n(⌈lg σ⌉+ τ) + 2σ⌈lg n⌉ bits of memory.

4 Huffman-Shaped Wavelet Tree Construction

We adapt our algorithm to construct the levelwise Huffman-shaped wavelet tree. In
a preliminary step, we process T and compute the inverse canonical Huffman codes
(see Sect. 2) for all characters of Σ. Since the code lengths are bounded by logϕ n

bits (with ϕ = (1 +
√
5)/2 the golden ratio) [2], we can afford storing a table of size

σ(⌈logϕ n⌉+ ⌈lg logϕ n⌉) = O (σ lg n) bits that maps characters to their codes.
The procedure is now vastly analogous to Sect. 3, extracting τ -bit blocks from the

Huffman codes of characters for processing a cluster. A complication arises from the

fact that when computing level ατ + t of the wavelet tree, some codes may already
have ended. Using inverse canonical Huffman codes already establishes that this can
only occur on the right side of the tree. What remains is to filter from S codes that
are of length at least ατ + t+ 1 bits, and discard codes ending after ατ + t bits. We
do this just before the list splitting step.

Because S only contains τ -bit blocks of the characters’ codes, neither the full codes
nor their lengths are known. We therefore introduce an additional packed list L of
nτ bits, storing at L[i] the remaining length in the current cluster of the Huffman
code corresponding to S[i] (for all i ∈ [0, n)). We reduce each length by one, such that
length 0 means one remaining bit. To ensure that τ bits suffice to store a length, we
also limit them to τ : we only do τ passes in the current cluster and do not care about
how much they extend beyond. Each length in L thus requires ⌈lg(τ + 1)⌉ ≤ τ bits.

By construction of L, the code of a character ends at level ατ + t if its remaining
length equals t. With this, we can do a parallel less-or-equal comparison of w/τ lengths
against t before performing the list splitting on S. This can be done using operations
similar to those used in fusion nodes, or using the parallel compare instruction if τ is a
multiple of 8 (we refer to [5] for details). The result is a bitmask indicating values in L
that are ≤ t, which can be used to filter from S using pext or vperm as fit.

At the beginning of a cluster, we can construct L from T with negligible overhead
during the extraction of S using our code table. For subsequent levels, we split the
entries of L according to the t-th bit in the code fraction in the same way that we
split S. When reshuffling T for preparing the processing of the next cluster, we discard
characters whose code lengths ended in the current cluster.

5 Experiments

We implemented our algorithm in C++ and provide the source code under an open
source license at https://github.com/jptrn/mawt. We conduct an experimental
evaluation on a system with an Intel Core i9-11900KF CPU, running at 3.5GHz (turbo
disabled) and featuring a majority of the AVX-512 instruction set for 512-bit words,
including those mentioned in Sect. 2. The available RAM is 128GiB; the size of the L1
data cache is 384KiB. Our evaluation includes the following algorithms:

• ext: Using pext for bit extraction and list splitting. We set τ := 4 and fix the word
size to 64 bits, which pext is limited to.

• shuf w: We fix τ := 8 and vary the word size w between 64, 128, 256 and 512 bits.
For bit extraction, we use pext if w = 64 and switch to vpshufbit otherwise. For
list splitting (and filtering for Huffman-shaped wavelet trees), we use pshufb for
w ≤ 128, and switch to vpcompress for larger words.

• lut: Baseline using precomputed lookup tables rather than vector instructions as
originally proposed by [1, 14]. We set τ = 4, such that the tables are reasonably
small to remain in the CPU’s cache at all times, and use 64-bit words.

• pc and pc-ss: The prefix counting algorithm due to [4] and its single scan variant,
the fastest purely sequential practical algorithms known to us.

https://github.com/jptrn/mawt

Table 1: The input file corpus used for experiments, with n the number of characters,
σ the number of distinct characters and H0 the zeroth-order entropy.

File Description Source n σ H0

dblp.xml Structured text (XML) [8] 282.42Mi 97 5.26
dna DNA sequences [8] 385.22Mi 16 1.98
english English texts [8] 2.06Gi 239 4.53
pitches MIDI pitch values [8] 53.25Mi 133 5.63
proteins Protein sequences [8] 1.10Gi 27 4.21
sources Source program code [8] 210.10Mi 230 5.46

cc.16gib Web crawl (text only) [4] 16.00Gi 243 6.20
dna.16gib Raw DNA sequences [4] 16.00Gi 4 2.00
wiki.16gib Wikipedia dump (text only) [4] 16.00Gi 212 5.38

ru.8gib Word-based text [4] 2.00Gi 28,760,289 14.49

Table 2: Throughputs (MiBit/s) of the binary wavelet tree construction experiment.
Underlined throughputs mark the fastest for the respective input file.

File lut ext shuf64 shuf128 shuf256 shuf512 pc pc-ss

dblp.xml 433.44 722.21 614.24 834.92 1,197.80 1,477.77 608.43 752.48

dna 529.32 883.00 563.11 668.93 862.49 1,011.45 594.02 745.68

english 456.91 770.55 677.96 906.42 1,304.80 1,642.69 623.08 704.90

pitches 448.02 749.24 686.88 886.62 1,276.36 1,584.19 578.70 328.47

proteins 375.73 575.99 565.63 707.23 985.35 1,178.02 633.58 761.41

sources 451.24 757.75 650.22 882.45 1,296.80 1,632.85 594.22 754.72

cc.16gib 453.97 729.58 653.25 875.61 1,265.27 1,604.84 628.46 752.97

dna.16gib 436.89 644.08 483.45 451.33 537.36 593.96 669.70 650.33
wiki.16gib 447.95 714.42 634.91 871.14 1,267.69 1,604.39 591.01 753.05

ru.8gib 317.20 642.51 506.04 660.23 938.68 1,121.03 346.96 170.44

We construct the wavelet trees for input files used in recent related work [4, 13],
listed in Table 1, and measure the median throughput over five iterations. Similar
to [4], the throughput is defined as the number of output bits produced per time unit
to account for the different effective alphabet sizes of the different inputs.

Table 2 shows our results for constructing the binary wavelet tree. Our implemen-
tations shuf256 and shuf512 dominate even the fastest known sequential wavelet
tree construction algorithms. In particular, shuf512 is at least 35% (dna) and up
to 2.7 times (pitches) as fast as the pc variants due to [4]. For a larger alphabet
(ru.8gib), being 3.2 as fast as pc, we produce the best result in comparison. Generally,
doubling the word width for the shuf implementation increases its throughput. The
most remarkable increase occurs going from 128-bit to 256-bit registers, which increases
the throughput by over 40% on many inputs. When fixing words to 64 bits, our
implementation ext is faster than shuf64 and competitive with pc and pc-ss on most
inputs. Our implementation using lookup tables (lut) is never competitive. We note
that for small alphabets (⌈lg σ⌉ ≤ 8), our shuf variants only process a single cluster
since τ = 8. When the input is large but the alphabet very small (dna.16gib), the

Table 3: Throughputs (MiBit/s) of the Huffman-shaped wavelet tree construction
experiment. Underlined throughputs mark the fastest for the respective input file.

File ext shuf64 shuf128 shuf256 shuf512 pc pc-ss

dblp.xml 293.12 224.92 328.22 405.36 467.22 140.49 174.34
dna 223.31 156.60 192.67 222.97 243.47 152.19 145.95

english 236.20 214.51 295.57 370.08 428.04 132.16 129.48
pitches 308.94 237.26 372.00 488.96 584.30 157.42 173.36
proteins 237.44 209.68 300.20 379.16 435.13 158.95 169.76
sources 283.54 222.68 330.00 418.48 486.50 149.74 158.28

cc.16gib 287.72 210.78 301.71 370.68 427.44 148.24 166.16
dna.16gib 244.32 172.70 211.35 236.72 258.73 182.21 177.10
wiki.16gib 251.96 207.71 291.73 359.70 414.72 144.61 158.65

vectoring approach does not appear to have benefits over pc.
The performance gain of our algorithm comes at a memory trade-off: our imple-

mentations use roughly 4.5 times as much memory as pc. An improvement can be
achieved by recycling the memory allocated for Tα+1 for the packed lists Sατ+t while
processing a cluster. When ⌈lg σ⌉ ≥ 2τ , no additional memory needs to be allocated
for Sατ+t at all. This reduces the space usage to 2.5 times that of pc.

The implementation of Kaneta [13] is closed source and not available. We expect
our implementations ext and shuf64 to be analogous to theirs. To get an idea about
how we compare against them, we use that they also compare against pc for the
Pizza & Chili corpus. By rule of three on their reported results for pc, we project
their throughputs to get an estimate for our setup. By this projection, on average, our
implementation of ext is 10% faster than theirs, while our shuf64 is 3% slower. We
therefore conclude that our implementations ext and shuf64 are indeed analogous to
Kaneta’s. By supporting wider registers of up to 512 bits in shuf512, however, we
achieve speedups of 2 to 2.5 compared to their results.

Table 3 shows our results for constructing Huffman-shaped wavelet trees. Here, we
did not consider lookup tables, because we would need a different lookup table per
cluster, and we did not expect it to be competitive given the results of the binary wavelet
tree experiments. The computation of Huffman codes is included in the measured
throughputs and based on the same (open source) code due to [4]. Our implementation
shuf512 outperforms pc in all instances, finishing 1.4 (dna.16gib) to 2.6 (wiki.16gib)
times as fast. None of the algorithms finished within an acceptable time frame for the
large alphabet input (ru.8gib), taking too long to compute its Huffman tree.

Further Extensions. Our algorithm can easily be modified to construct instead
the (binary or Huffman-shaped) wavelet matrix. The experimental results showed no
notable differences to our wavelet tree results and are therefore omitted for brevity.

Finally, we experimented with parallelizing the algorithm using domain decomposi-
tion, which gave the best results for [4]. However, this did not scale to our satisfaction;
using 16 threads only resulted in a speedup of 6. This can be explained by the fact
that Intel’s Rocket Lake CPUs (which we are using) downclock when using AVX-512

registers in multicore situations [6]. Given this behaviour, a scalable shared-memory
implementation using ultrawise registers seems infeasible.

Acknowledgements. This project has received funding
from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 882500), as well as from the Deutsche Forschungsge-
meinschaft (DFG) under the Research Grants programme (project No. 501086801).

References

[1] Maxim Babenko, Pawel Gawrychowski, Tomasz Kociumaka, and Tatiana Starikovskaya.
Wavelet trees meet suffix trees. In SODA, pages 572–591. SIAM, 2015.

[2] Michael Buro. On the maximum length of huffman codes. Inform. Process. Lett.,
45(5):219–223, 1993.

[3] Francisco Claude, Gonzalo Navarro, and Alberto Ordóñez Pereira. The wavelet matrix:
An efficient wavelet tree for large alphabets. Inf. Syst., 47:15–32, 2015.

[4] Patrick Dinklage, Jonas Ellert, Johannes Fischer, Florian Kurpicz, and Marvin Löbel.
Practical wavelet tree construction. ACM J. Exp. Algorithmics, 26:1.8:1–1.8:67, 2021.

[5] Patrick Dinklage, Johannes Fischer, and Alexander Herlez. Engineering predecessor
data structures for dynamic integer sets. In SEA, pages 7:1–7:19. Dagstuhl, 2021.

[6] Travis Downs. Ice Lake AVX-512 downclocking. https://travisdowns.github.io/
blog/2020/08/19/icl-avx512-freq.html, accessed Oct 2022.

[7] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications.
In FOCS, pages 390–398. IEEE, 2000.

[8] Paolo Ferragina and Gonzalo Navarro. Pizza & chili corpus – compressed indexes and
their testbeds. http://pizzachili.dcc.uchile.cl/texts.html, accessed Oct 2022.

[9] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix trees and
optimal text searching in bwt-runs bounded space. J. ACM, 67(1):2:1–2:54, 2020.

[10] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed
text indexes. In SODA, pages 841–850. SIAM, 2003.

[11] David A. Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098–1101, 1952.

[12] Intel Corporation. Intel (R) 64 and IA-32 Architectures – Software Developer’s Manual
– Volume 2: Instruction Set Reference, A-Z, September 2016.

[13] Yusaku Kaneta. Fast wavelet tree construction in practice. In SPIRE, pages 218–232.
Springer, 2018.

[14] J. Ian Munro, Yakov Nekrich, and Jeffrey Scott Vitter. Fast construction of wavelet
trees. Theor. Comput. Sci., 638:91–97, 2016.

[15] Eugene S. Schwartz and Bruce Kallick. Generating a canonical prefix encoding.
Commun. ACM, 7(3):166–169, 1964.

https://travisdowns.github.io/blog/2020/08/19/icl-avx512-freq.html
https://travisdowns.github.io/blog/2020/08/19/icl-avx512-freq.html
http://pizzachili.dcc.uchile.cl/texts.html

	Introduction and Contributions
	Preliminaries
	Levelwise Wavelet Tree Construction
	Huffman-Shaped Wavelet Tree Construction
	Experiments

