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Abstract

We introduce PaCHash, a hash table that stores its objects

contiguously in an array without intervening space, even if the

objects have variable size. In particular, each object can be

compressed using standard compression techniques. A small

search data structure allows locating the objects in constant

expected time. PaCHash is most naturally described as a

static external hash table where it needs a constant number of

bits of internal memory per block of external memory. Here,

in some sense, PaCHash beats a lower bound on the space

consumption of k-perfect hashing. An implementation for

fast SSDs needs about 5 bits of internal memory per block of

external memory, requires only one disk access (of variable

length) per search operation, and has small internal search

overhead compared to the disk access cost. Our experiments

show that it has lower space consumption than all previous

approaches even when considering objects of identical size.

1 Introduction

Hash tables support constant time key-based retrieval
of objects and are one of the most widely used data
structures. Compressed data structures store data
in a space efficient way, preferably approaching the
information theoretical limit, and support various kinds of
operations without the need to decompress the entire data
structure first [29, 1, 25, 58]. There has been intensive
previous work on both subjects but, surprisingly, the
intersection leaves big gaps. There is a lot of work on
hash tables which need little more space than just the
stored objects themselves [35, 8, 3, 26, 34, 51]. However,
all these approaches are only space efficient for objects of
identical size which makes it impossible to compress the
objects with variable bit-length codes. Currently, most
hash tables for objects of variable size store references
from table entries to the data which entails a space
overhead of at least logN bits per object, where N is
the total size of all objects in the table. Throughout
this paper, log x stands for log2 x. See Section 2 for
an introduction of basic techniques and Table 1 for a
summary of the notation.
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PaCHash eliminates fragmentation by packing the
objects contiguously in memory without leaving free
space. This makes it impossible to use the approach
of most previous hash tables to directly use the hash
function value to (approximately) locate the objects.
Instead, PaCHash uses a highly space efficient search data
structure that translates hash function values to memory
locations. More precisely, objects are first hashed to bins.
The bins are stored contiguously in m blocks of size B.
PaCHash essentially stores one bin index per block using
a searchable compressed representation which enables
finding the block(s) where a bin is stored. In Section 4,
we describe the data structure in more detail and in
Section 5 we analyze it. Basically, for a tuning parameter
a, the expected number of block reads to retrieve an
object x of size |x| is about 1 + 1/a + |x|/B while the
internal memory data structure needs 2 + log(a) bits per
block. We also discuss even smaller representations.

Even though hash tables like PaCHash have appli-
cations in object stores, there is little previous work on
space efficient hash tables for objects of variable size (see
Section 3). For objects of identical size s, the most space
efficient previous solutions are based on minimal perfect
hashing (MPH) [20, 7] and require a constant number
of bits per object. PaCHash approximates this when
choosing B = s, also needing a (slightly larger) constant
number of bits per object but lower construction time.
The picture changes when we look at larger block sizes
B = ks and the corresponding approach of minimal k-
perfect hashing (MkPH) [7]. Now, PaCHash still needs
only a constant number of bits per block, while there is a
lower bound of Ω(log k) bits per block using MkPH (see
Section 5).

Another fundamental data structure related to vari-
able size objects and PaCHash is the variable-bit-length
array (VLA). A VLA is an array that allows direct access
to objects of variable size. Oftentimes, VLAs are used to
efficiently access variable-length codes, e.g., Elias-γ and
-δ codes [19] or Golomb codes [30], see Section 3.

Section 6 describes different implementation variants
of PaCHash including fully internal and fully external ver-
sions as well as a variant that is usable as VLA. Section 7
describes experiments for an external implementation.
Section 8 summarizes the results and discusses possible
directions for further research.
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Table 1: Symbols used in this paper

S Set of objects
n Number of objects
N Total size of objects (bits)
p Internal index data structure
a Tuning parameter: Bins per block
m = N/B̄ Number of blocks
B Block size (bits)
B̄ = B− d Payload data per block
d ∈ 0.. log B Encoding-dependent number of bits to

store position of first bin of block

Our Contribution. In this paper, we design the new
hash table PaCHash. The data structure supports
objects of variable size with space overhead close to
competitors that only support objects of identical size.
We analyze it thoroughly in a variant of the external
memory model. Finally, we compare our implementation
with competitors from the literature. As close contenders,
we also implement Separator Hashing [31, 39] and
Cuckoo Hashing [5, 50] with adaptions that partially
allow variable size objects.

2 Preliminaries

Monotonic Sequences and Bit Vectors. The index
data structure of PaCHash mainly consists of a com-
pressed representation of a monotonically increasing se-
quence p = ⟨p1, . . . , pk⟩ of integers in the range 1..U .
Searching boils down to predecessor queries in p, i.e.,
given a query integer i, the largest sequence element ≤ i
is returned.

A well-known practical solution is Elias-Fano cod-
ing [19, 23] which splits each pi. The log(U/k) least
significant bits are directly stored in an array L requiring
k log(U/k) bits of space. The log(k) most significant bits
form a monotonic sequence of integers H = ⟨u1, . . . , uk⟩
in the range 0..k. H is stored in a bit vector of size 2k+1
where ui is represented as a 1-bit in position i+ ui. The
total space usage therefore is k(2 + log(U/k)) + 1 bits.
A predecessor query in p executes a select0 query in H
(finding the i-th 0-bit in H) which locates a cluster of
entries in L that must contain the sought element. Using
additional space o(k), select0 queries can be answered
in constant time [12]. In contrast to the general case,
we will show that searching the cluster takes expected
constant time in our application.

One can also interpret p as the positions of 1-bits in
a sparse bit vector which enables even more compact rep-
resentations. For example, using Succincter [52], about
k(1.44+log(U/k))+1 bits are achievable which is almost
information theoretically optimal. In Section 4.2.3, we

give an even more compact format exploiting additional
structure in the bit vector.

Model of Computation. We describe our results in a
variant of the external memory model [57] adapted to a
situation where objects are compressed to variable length
sequences of bits. We have a fast memory of size M bits.
Accesses to a large external memory are I/Os to blocks of
B consecutive bits. In contrast to the original model, we
analyze both I/Os and internal work. scan(N) denotes
the cost (I/Os and internal work) of scanning N bits of
data.1 sort(N) denotes the cost of sorting N bits.2 In
particular, we are interested in a high load factor, which
is N divided by the total external space usage.

3 Related Work

The following section introduces related data structures
from the literature. Table 2 provides an overview over the
most important parameters. There are close contenders
in the form of object stores from the database literature.
BerkeleyDB [48] uses a B+-Tree [15] of order d, where
each node branches between d and 2d times. LevelDB [32]
and RocksDB [21] use a Log-Structured Merge tree [49],
which stores multiple levels of a static data structure
with increasing size. Insertions go into the first level
and when a level gets too full, it is merged into the next
level. SILT’s LogStore [41], Facebook Haystack [6] and
FAWN [2] simply store a pointer of size Ω(logN) to
each object. Real world instances often store very small
objects [47], so the pointers add a considerable amount
of overhead.

Sorted Objects. LevelDB ’s static part [32] stores
objects in key order, enabling range searches and common-
prefix-compression. SortedStore in SILT [41] sorts the
objects by their hashed key and uses entropy coded tries
as an index. Pagh [50] proposes to sort the n objects by
a hash function with range ≥ n3. The internal memory
stores the first hash function value mapped to each block.
This data structure can be queried using a predecessor
data structure in time O(log log n). A novel idea in
PaCHash is that it uses a hash function range based on the
total space N instead of the number of objects n, which
enables efficient queries and compact representation.

1The internal work may depend on the encoding of the data.

For example, we may need Θ(N) machine instructions, or, a faster

encoding may enable bit-parallel processing in O(N/ logn).
2This entails (N/B)(1 + ⌈logM/B(N/M)⌉) I/Os. In this paper

algorithms with linear internal work are possible exploiting random

integer keys. The cost also includes (de)coding overhead as in scan
operations.
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Table 2: Space efficient object stores from the literature.
To unify the notation, we convert all values so that they
refer to objects of size s = 256 bytes stored in blocks of
B = 4096 bytes. The load factor α is given in percent
and the internal space Ib in bits per block of B/s = 16
objects. Top: Stores for objects of identical size. Can be
used for objects of variable size by using indirection or
for some methods by accepting significantly lower load
factors. Bottom: Dedicated variable size object stores.
This table also contains VLAs, even though those are a
slightly different field.

Method Ib α I/Os

fi
x
ed

si
ze

Extendible Hashing [22] logm 90 1
Larson et al. [40] 96 <96 1
SILT SortedStore [41] 51 100 1
Linear Separator [38] 8 85 1
Separator [31, 39] 6 98 1
Robin Hood [10] 3 99 1.3
Ramakrishna et al. [54] 4 80 1
Jensen, Pagh [33] 0 80 1.25
Cuckoo [5, 50] 0 <100 2
PaCHash, a = 1 2 100 23

PaCHash, a = 8 5 100 1.133

va
ri
ab

le
si
ze

SILT LogStore [41] 832 100 1
Külekci [36] (VLA) 176 <100 0–114

SkimpyStash [17] 32 ≤98 8
Blandford, Blelloch [9] (VLA) 16 ≤50 1
PaCHash, a = 1 2 99.95 2.063

PaCHash, a = 8 5 99.95 1.193

External Hash Tables. In external hash tables, each
table cell corresponds to a fixed size block. A common
technique to support variable size objects is using
indirection by internally storing a pointer to the object
contents, possibly inlining parts of the objects [41,
Section 4]. NVMKV [45] and KallaxDB [11] use an
SSD as one large hash table and rely on SSD internals to
handle empty blocks in a space efficient way. Overflowing
blocks due to hash collisions can be handled with perfect
hashing [40, 54] or using one of the following techniques.

With Hashing with Chaining, objects of overflowing
blocks are stored in linked lists. SkimpyStash [17] chains
objects using an external successor pointer for each object.
This trades internal memory space for latency because
of multiple dependent I/Os. Jensen and Pagh’s [33]
data structure reserves parts of the external memory
as a buffer to reduce the need for chaining. Extendible
Hashing [22] keeps a balanced tree of blocks. Overflowing
blocks are split into two children indexing one more bit
of the hashed key.

Another method for resolving collisions is open ad-
dressing, where each object could be located in multiple
blocks. Cuckoo Hashing [51, 18] locates each object in
one of two (or more [26]) independently hashed blocks.
Queries can load both blocks in parallel to reduce la-
tency. With Separator Hashing [31, 39], each object has
a sequence of blocks it could be stored in and a corre-
sponding sequence of signatures. When a block overflows,
the objects with the highest signature values are pushed
out to the next block in their respective sequences. The
internal memory stores the highest signature value of
the objects placed in each block. A query follows the
object’s sequence of blocks and stops when it finds a
separator that is larger than the corresponding signature.
Linear hashing with separators [38] is a dynamic vari-
ant with a linear probe sequence. External Robin Hood
Hashing [10] is similar to linear separator hashing, but
it instead pushes out objects that are closest to their
respective home address. For each block, the internal
memory stores the smallest distance of its objects to their
respective home address.

Variable-Bit-Length Arrays. Variable-bit-length ar-
rays (VLAs) are arrays containing objects of variable
size. VLAs are closely related to PaCHash, which can be
used also as VLA by using the array index instead of the
hash function, see Section 6. Conversely, PaCHash can
be seen as a VLA where each entry stores a PaCHash bin.
However, most VLAs have some limitations that rule out
storing the PaCHash bins efficiently. A major difference
to all VLAs described below is PaCHash allowing objects
to span over multiple blocks of fixed size.

Navarro [46, Section 3.2] describes several techniques
for implementing VLAs. However, none of them achieves
the same favorable space-time trade-off as the PaCHash
VLA. The closest one – sampled pointers – needs
N+n log(N)/k bits of space with access cost bounded by
the time needed to skip k objects. Note that this time can
be large when large objects need to be skipped.5 All the
other described VLAs need several bits of space overhead
per object (multiplied with a factor that depends on the
maximum or average object size).

The VLA introduced by Külekci [36] uses wavelet
trees [24] to partition the universe. This makes the query
time depend double logarithmically on the largest element
stored in the VLA, a limitation not existing in PaCHash.

3PaCHash performs one I/O of variable size which is faster
than the competitors’ multiple I/Os.

4Using 256 byte objects, we have an alphabet size of 28·256,
and log log 28·256 = 11.

5Space could be reduced to N + n
k
(2 + log kN

n
) bit using Elias-

Fano coding of the pointers – resulting in similar space as the
PaCHash VLA with B = kN/n but with worse access costs.
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Figure 1: Example of PaCHash with n = 9 objects and
m = 3 blocks. Using the hash function h, the objects
are mapped to 12 bins shown as colors, i.e., a = 4. The
bin content is then contiguously written to the external
memory blocks. The internal memory index p stores the
first bin intersecting with each block. Note that locating
bin 8 will return the range 2..3, i.e., block 2 is loaded
superfluously because there is no preceding empty bin
that can encode whether it overlaps into the previous
block. All other bins are located optimally.

Blandford and Blelloch [9] describe dynamic VLAs
and hash tables for variable sized objects. However, their
technique incurs a constant factor of space overhead and
is limited to objects of bounded size. They partition
the objects into blocks, but the blocks are generally only
partially filled and do not allow objects crossing block
boundaries as in PaCHash.

4 The PaCHash Data Structure

We now present PaCHash in detail – a hash table which
considerably improves on the data structures from the
literature. It natively supports variable size objects
without the need for indirection or empty cells. It
needs only a few bits of internal memory per block and
still needs only one single I/O operation (of variable
length) per query. PaCHash consists of an external
part subdivided into m blocks of exactly B bits each
that store the actual objects and an internal part that
allows finding the blocks storing an object. Figure 1
gives an example for the external and internal memory
data structures. We deliberately use the word object for
the stored data because that highlights the flexibility
of PaCHash. Naturally, an object stores a key-value-
pair, but it can also store only a value to obtain an
external dictionary data structure. It is even possible to
use quotienting by storing the bin index inside the first
object of each bin.

4.1 External Object Representation. PaCHash
stores the objects sorted by a hash function h with a
rather small domain, namely h : K → 1..am, where K
is the set of possible keys, m is the number of blocks
and a is a tuning parameter that we assume to be a
power of two. The hashes can collide and therefore
group the objects into am bins. The objects are now
basically stored contiguously. “Basically” means that
blocks may also contain information needed to find the
first object or bin stored in them. Refer to Section 6
for a discussion of alternative encodings. Our default
assumption is as follows: Each external block stores an
offset of size d = log B bits indicating the bit where the
first bin in the block starts. The remaining space stores
the objects contiguously where an object may have an
arbitrary size in bits. No space is left between subsequent
objects. In particular, object representations may overlap
block boundaries. We assume that objects are encoded in
a self-delimiting way, i.e., when we know where an object
starts, we can also find its end. For example, we could
have a prefix-free code for the objects. Construction first
sorts the objects by their hash function value. Then it
scans the sorted objects, constructing both the external
and the internal data structure along the way. Refer to
Section 5 for more details. If the internal data structure
gets lost, for example due to a power outage, it can be
re-generated using a single scan over the external memory
data.

4.2 Internal Memory Data Structure. Given a bin
b, the internal memory data structure p can be used to
determine a (near-)minimal range i..j of block indices
such that b is stored in that range. When performing a
query, that block range can then be loaded from external
memory and scanned for the sought key. In practice, the
resulting latency is often close to that of loading a single
block since it includes only one disk seek. Conceptually, p
stores a sequence ⟨p1, . . . , pm⟩ where pi specifies the first
bin whose data is at least partially contained in block i.6

We can use a predecessor query on p to determine i.
When the predecessor is b itself, we also need to load the
previous block. Another predecessor query or scanning
then determines j, as illustrated by the pseudocode in
Algorithm 1. To get the most out of this specification, we
take empty bins into account: When a bin starts exactly
at a block boundary and has an empty predecessor, we
store that predecessor. This implies that if (and only if) a
bin b starts at a block boundary and the previous bin b−1
is nonempty, retrieving bin b will load one block too much.

6An alternative would be to store the first bin that starts in
each block. This introduces a special case when a block is fully

overlapped by a bin and needs slightly more work when performing

queries.
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Algorithm 1: A query for an object x calls locate(x),
loads the returned block range, and scans the blocks to
find the object content. Determining the range boils
down to predecessor queries on p.

Function locate(x)
b := h(x)
find i such that pi−1 < b ≤ pi // predecessor query

if pi = b then i := i− 1 // b may start in previous block

find first j such that pj > b // predecessor query or scan

return i..(j − 1)

Note that p is a monotonically increasing sequence of
integers which can be represented with different methods
and trade-offs.

4.2.1 Elias-Fano Coding. A standard technique for
storing monotonic sequences is Elias-Fano coding (see
Section 2). A way to interpret the vector H of upper
bits of an Elias-Fano coded sequence is that it stores
the number of items having each possible combination of
most significant bits in unary coding. To locate the
predecessor of item b = au + ℓ in the sequence, we
calculate select0(u− 1) on the upper bits H , which gives
us the start of a cluster of entries that all have most
significant bits u. The corresponding index in L can be
calculated by subtracting (u− 1). We scan the cluster
to find the largest index i with pi ≤ b. In our case,
this takes constant expected time (see Lemma 5.4). The
internal memory usage is m(2 + log(a) + o(1)) bits (see
Lemma 5.1).

4.2.2 Bit Vector with Succincter. It is also possible
to store p as a bit vector with rank and select support.
An item pi at position i is then represented as a 1-bit
in position i + pi. The position of the predecessor of
a bin b can be found in constant time by calculating
select0(b)− b. The actual value can be calculated using
a select1 query. Because the bit vector is sparse, we can
use Succincter [52] to compress it and its rank and select
structures down to about m(1.44+ log(a+1)+ o(1)) bits
(see Lemma 5.2).

4.2.3 Entropy Coding. We observed that in prac-
tice, the bit vector is considerably more regular than a
truly random one and thus allows additional compression.
This can be made fast by splitting it into ranges that are
compressed individually, e.g., using dictionary compres-
sion. In our experimental evaluation in Section 7.2, we
see a space-time trade-off, where we can achieve internal
memory space consumption less than the theoretically
best results described above in Section 4.2.2.

5 Analysis

We now formalize the properties of PaCHash in The-
orem 5.1 which basically says the following: External
space is just the space needed to store the variable sized
objects plus possibly a few bits per block to know where
the first object in the block starts. Internal space is about
2 + log a bits per block where a is a tuning parameter
that also shows up in a term adding 1/a expected I/Os
to the retrieval cost.

While proving the theorem, we discuss some variants
and implications. Section 5.1 considers construction cost
and final space consumption, while Section 5.2 looks at
I/Os and internal work of queries.

Theorem 5.1. Consider n objects of total size N bits
which are stored in m blocks of size B. Let d ∈ 0.. log B be
an encoding-dependent number of bits needed to specify
where the first bin or object of a block starts and B̄ = B−d
be the payload size per block, i.e., m = N/B̄. For a
parameter a, let a random uniform hash function map
the objects to am bins.

Then, PaCHash with Elias-Fano coding needs m(2 +
log a+ o(1)) bits of internal memory and N(1+d/B̄) bits
of external memory. The construction cost is the same as
that of sorting the objects using am random integer keys.
The expected time for retrieving an object of size |x| bits
is constant plus the time for scanning 1 + |x|/B̄ + 1/a
blocks. The unsuccessful search time is the same except
that |x| is replaced by 0.

5.1 Construction. Assuming that the set of input
objects is stored in compressed form on external memory,
we mainly need to sort the objects by their hash function
value. In our model, this has complexity sort(N). In
most practically relevant situations, this can even be
done in O(scan(N)) using integer sorting, see Section 5.3
for details.

The sorted representation is then scanned and
basically copied to the output, only adding d bits of
information within each block, which allow a query to
initialize the scanning operation. What d is depends on
the concrete encoding of the data, ranging from d = 0
for objects of identical size or for 0-terminated strings to
d = log(B) bits when we explicitly encode the starting
position of an object or bin. Refer to Section 6 for
examples.

Lemma 5.1. When using Elias-Fano coding to store
p, the index needs 2+log a+o(1) bits of internal memory
per block and can be constructed in time O(m).

Proof. p consists of k = m integers ≤ am = U . Inserting
this into the space usage of Elias-Fano coded sequences
(see Section 2) gives us space(p) = k(2+ log(U/k))+1 =
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m(2 + log(am/m)) + 1 = m(2 + log a) + 1. The select0
data structure on the upper bits H can be stored in o(m)
bits [12]. Each of the m insertions into the sequence can
be done in constant time while generating the external
object representation. The construction of the select0
data structure takes time O(m).

Lemma 5.2. When using Succincter [52] to store p,
the index needs 1.4427+ log(a+1)+ o(1) bits of internal
memory per block.

Proof. (Sketch, for full proof see full paper.) Using
Succincter, i.e., [52, Theorem 2] with a length-(a+ 1)m
bit vector containing m ones, we can represent the
internal memory index using only log

(
(a+1)m

m

)
+ o(m) ≤

m (1.4427 + log(a+ 1))+ o(m) bits, which results in the
space mentioned above per external memory block.

The lower bound for the space usage of a minimum
k-perfect hash function for objects of identical size
approaches n ·(log(e)+log(k!/kk)/k) [7]. Using Stirling’s
approximation, we derive a new lower space bound that
is easier to interpret.

n·(log(e) + log(k!/kk)/k)

≈ n ·

(
log(e) + log

(√
2πk(k/e)k

kk

)
/k

)
= n ·

(
log(e) + log(

√
2πk(1/ek))/k

)
= n ·

(
log(e) +

log(
√
2πk)

k
− log(ek)

k

)

= n ·
(
log(e) +

log((2πk)1/2)

k
− log(e)

)
=

n

k
· 1
2
log(2πk)

The value n/k is the number of blocks, so MkPHFs
need Ω(log k) bits of space per block, while we show
above that PaCHash needs a constant number. In a way,
PaCHash therefore breaks the theoretical lower space
bounds of MkPHFs while keeping the same O(1) query
time. Choosing parameter a large can bring the number of
I/O operations arbitrarily close to optimal, independently
of k.

5.2 Query. We first show that a query loads a small
expected number of blocks, depending only on the size
of that specific object – not the other objects in the
data structure. We then show that the exact blocks to
be loaded can be determined upfront without any I/O
operations, using constant time.

Lemma 5.3. Retrieving an object x of size |x| from
a PaCHash data structure loads ≤ 1 + |x|/B̄+ 1/a con-
secutive blocks from the external memory in expectation
(setting |x| = 0 if x is not in the table).7

Proof. We first derive the expected number of blocks
overlapped by the bin bx = h(x) that x is stored in. We
then analyze the edge case that PaCHash sometimes
loads one additional block unnecessarily even though it
is not overlapped.

The expected size E(|bx|) of bx is the sum of |x| and
all other objects from the input set S that are mapped
to it:

E(|bx|) = |x|+
∑

y∈S,y ̸=x

|y|P(y ∈ bx)

≤ |x|+
∑
y∈S

|y|P(y ∈ bx) = |x|+
∑
y∈S

|y| · 1

am

= |x|+ B̄m · 1

am
= |x|+ B̄

a

Let X denote the number of blocks overlapped by
bin bx. Assuming that the block boundaries and bin
boundaries are statistically independent,8 and using
the linearity of the expected value, we get E(X) =
1 + (E(|bx|)− 1)/B̄ = 1 + |x|/B̄+ 1/a− 1/B̄.

At a position i, the sequence p stores the first bin
bi that intersects with block i. Most of the time, this
also means that bi extends into block i− 1, which is why
queries load that block as well. When a bin starts exactly
at a block boundary, though, the previous block is not
actually needed. Because bin boundaries are statistically
independent of block boundaries, the probability of that
happening is 1/B̄.9

We get the result by putting together the expected
blocks overlapped by a bin and the probability for loading
one single block too much. For negative queries, we are
interested in the size of the bin that x would be hashed
to, so we can simply set |x| = 0.

7Using fewer estimates in the proof one can derive a bound

of 1 +
|x|−c+1−e−β

B̄
+ 1

a
where β = nB̄

Na
is the average number of

objects per bin and c is the greatest common divisor of B̄ and all

object sizes. In particular, for objects of identical size dividing B,
the bound is close to 1 + 1/a.

8We can guarantee the independence by cyclically shifting the

data structure, i.e., we set the offset of the first block to a random
number in 0..(B̄ − 1) and let the last bins wrap around into the

first block.
9When the preceding bin b−1 is empty, PaCHash stores that

empty bin in p, as described in Section 4. This means that the
probability of unnecessary block loads actually is smaller, namely
1
B̄
(1 − P(|b−1| > 0)), where P(|b−1| > 0) =

(
1− 1

am

)n ≈ e−
n

am

is the probability of b−1 being empty.
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Lemma 5.4. When using Elias-Fano coding for the
index data structure of PaCHash, the range of blocks
containing the bin of an object x can be found in expected
constant time.

Proof. A query for an object x consists of four steps.
First, we hash x to get the corresponding bin bx = au+ℓ,
where a is the tuning parameter of PaCHash. We then
execute a constant time [12] select0 query on the upper
bitsH . That gives us the start of a cluster of entries in the
sequence that all have the same log(m) most significant
bits u. We need to iterate over the cluster entries which
are < bx until we find the predecessor. Each cluster entry
corresponds to a stored bin index. Let us bound the
expected size E(Yu) of all bins that have most significant
bits u and are < bx.

E(Yu) =
∑
y∈S

|y| · P(h(y) has MSB = u; h(y) < h(x))

≤
∑
y∈S

|y| · P(h(y) has MSB = u)

=
1

m

∑
y∈S

|y| = mB̄

m
= B̄

The expected number of cluster entries we need
to scan is therefore E(Yu)/B̄ = 1. The practical
implementation then further scans the cluster to find the
last block overlapping bx. This takes non-constant time
O(1 + |x|/B̄), which is not a problem since a proportional
number of blocks are loaded anyway. However, we
strengthen the lemma by observing that we can also
use another select0 query followed by a backward scan
of the cluster.

5.3 Details on External Sorting. We now show
that the external sorting needed during construction
of a PaCHash data structure can be done in scanning
complexity using very modest additional assumptions.
First note that the problem of sorting objects during
construction is easy when the average object size exceeds
the block size, i.e., N/n > B and thus n < N/B. In
that case, a variant of bucket sort that maps the keys
to O(n) buckets runs with linear internal expected work
and O(n+N/B) = O(N/B) I/Os [55, Theorem 5.9].

On the other hand, the average object size N/n must
be at least log n since we are looking at objects with
unique keys. For the remaining case log n ≤ N/n ≤ B,
we additionally make a tall cache assumption quite usual
for external memory [27] where M > B2. Since the index
data structure has at least N/B bits, we also know that
M ≥ N/B. A single scan of the input can partition it into
pieces of size about N

M/B ≤ N
(N/B)/B = B2 ≤ M which fit

Table 3: External space overhead of d bits per block in
order to facilitate scanning that block. The term +1
when d ̸= 0 is needed for the case that no object starts
in a block.

d Case Description

0 Identical object sizes, zero termi-
nated strings and analogous cases

⌈log(w + 1)⌉ Objects that use variable bit-length
encoding with ≤ w ≤ B bits

⌈log(W/w + 1)⌉ Objects of size divisible by w with
W = min(B,max object size)

⌈log(B)⌉ Explicit storage of a starting posi-
tion of a bin

into internal memory. Moreover, since the average object
size is ≥ log n, we can afford to replace the objects in
an internally sorted fragment of the input by key-pointer
pairs which once more allows us to use bucket sort – this
time running in internal memory.

6 Variants and Refinements

Up until now, PaCHash was described as a static, external
hash table for objects of variable size. The following
section describes variants of the scheme.

Object Encoding. Instead of storing objects contigu-
ously with a self-delimiting encoding, PaCHash allows
for a wide range of other options, as shown in Table 3.
In general, we have a trade-off between the space needed
to decode the objects in a block and the strength of as-
sumptions made on object representation. For example,
explicitly storing the offsets of objects in blocks removes
the restriction to a self-delimiting encoding, without in-
creasing the size of the internal data structure. Another
important case are objects of identical size where we can
calculate the block offset at query time and therefore
need no external space overhead. When the object size
divides the block size, it can be shown that the expected
number of I/O operations is close to 1 + 1/a.

Memory Locations. PaCHash can be stored fully
externally. By doing so, the number of I/Os for a query
is increased by three (two I/Os to query the rank and
select data structure on the bit vector of the Elias-Fano
coding and one I/O to get the remaining bits). The
number of I/Os can be reduced by interleaving the arrays
of the Elias-Fano coding. PaCHash is also interesting
as a purely internal data structure since it allows for
configurations that need less space than any previous
approach, even for objects of identical size. A variant
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that simplifies the external memory representation is to
store the d bits of offsets per block in an internal memory
data structure, possibly interleaved with the Elias-Fano
representation. A variant enabling faster scanning of
blocks separates keys and values [43], for example by
storing log B bits of offset for each object.

Functional Enhancements. Because PaCHash sorts
objects by their hashed key, range queries with respect
to the original keys are not immediately possible. Litwin
and Lomet [42] implement range queries for hash tables
by partitioning the key space into smaller pieces. An
index tree then leads to a number of small (PaCHash)
tables that are fully scanned. Order-preserving hash
functions [28] are another alternative. PaCHash can
be made dynamic using standard techniques like a
Log-Structured Merge Tree [49, 44]. Merging multiple
PaCHash data structures is possible efficiently. The idea
is to construct the hash function h by first hashing to a
larger range and then mapping it linearly to the range
am. When updating h to the new total number of blocks,
the objects of both input data structures are already
sorted and can be merged with a linear sweep.

PaCHash as Variable-Bit-Length Array. Since one
of PaCHash’s key features is to store objects of variable
size efficiently, it can also be used as variable-bit-
length array. To this end, we simply use the array
index as hash function if we also store the number of
previously stored objects. However, we then have to
assume that objects stored in the PaCHash VLA are self-
delimiting, as this allows us to identify the objects within
a block. Note that this assumption is satisfied in a lot of
applications VLAs are used in, e.g., when storing variable
length codes like Elias-γ and -δ codes [19] or Golomb
codes [30]. Alternatively, in external memory, we can
lift the restriction to self-delimiting objects by storing
offsets as described above. The number of previously
stored objects is necessary to identify the element within
the block, and requires at most ⌈log n⌉ bits per external
memory block.

7 Experiments

The code and scripts needed to reproduce our experi-
ments are available on GitHub under the General Public
License: https://github.com/ByteHamster/PaCHash.
The code for the comparison with competitors (including
our competitors’ code with some patches) is available on
GitHub as well: https://github.com/ByteHamster/

PaCHash-Experiments. The latter repository also con-
tains a Docker image that can build and run a simplified
version of the experiments from Figure 2 and Figure 4 in
about 30 minutes.

Experimental Setup. We run our experiments on
an Intel i7 11700 processor with 8 cores and a base
clock speed of 2.5 GHz. We use a Samsung 980 Pro
NVMe SSD with a capacity of 1 TB. The machine
runs Ubuntu 21.10 with Linux 5.13.0. We use the GNU
C++ compiler version 11.2.0 with optimization flags -O3
-march=native. Externally, each block of size B = 215

bits (4096 bytes) stores a table of 8 byte keys and 2 byte
object offsets. During construction, we sort pointers to
the objects using IPS2Ra [4]. Unless otherwise specified,
the index is an Elias-Fano coded sequence based on
sdsl’s [29] arrays of flexible bit width and the select data
structures by Kurpicz [37]. For the I/O operations, we
use io uring. Query operations keep a queue of 128
asynchronous requests in flight.

Competitors. To our knowledge, there is no existing
implementation of a hash table for variable size objects
that is simultaneously aimed at low internal memory us-
age and few I/O operations. As the main competitors,
we choose LevelDB [32], RocksDB [21], and SILT [41].
To abstract from the different implementations of I/O
operations, we also extract the internal memory index
(address calculation) from some competitors. Addition-
ally, we compare PaCHash to std::unordered map, as well
as the perfect hash functions RecSplit [20], CHD [7, 16],
and PTHash [53]. Despite std::unordered map not being
tuned for efficiency, it is a widely available, general pur-
pose hash table that can be seen as baseline for the simple
idea of explicitly storing pointers instead of building a
compressed index data structure.10

We also implement Separator Hashing [31, 39] and
Cuckoo Hashing [5, 50]. In contrast to the original papers,
our implementations can be used with objects of variable
size ≤ B when setting the load factor low enough. Note
that decreasing the load factor increases the number of
blocks and therefore the space needed for indexing. The
construction of PaCHash always succeeds, while it can
fail for Separator and Cuckoo Hashing depending on the
preselected load factor or tuning parameter. Refer to
Figure 5 for details.

7.1 PaCHash Configurations. The parameter a
provides a trade-off between internal space usage and
query performance, see Table 4. Figure 2 plots the bytes
read per query, depending on the average object size and
parameter a. It confirms the results of our theoretical
analysis in practice. The throughput of the Elias-Fano
representation increases when parameter a gets larger

10In this setting, general purpose internal memory hash tables
do not work well, as they introduce an overhead of at least logm

bits per element to store the positions, and they also have to store

the length of the element.
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Figure 2: Dependence of I/O volume and query time on the average object size s. Sizes are normal distributed
with variance s/5, rounded to the next positive integer. Dotted lines show theoretic I/O volumes, while marks show
measurements. Note that the measurements closely match the analysis. Using other distributions and plotting over
the returned objects’ sizes gives equivalent results.

Table 4: Average internal space usage and average query
time for different values of the parameter a and normal
distributed object sizes. For more information on the
query time, which is influenced by the object size, see
Figure 2. Note that the internal space usage does not
depend on the object size.

a
avg. internal space

[B/block]
avg. query time

[µs/query]

2 3.01 2.07
4 4.01 1.68
8 5.01 1.50
16 6.01 1.43
32 7.01 1.41

because the SSD needs to load fewer blocks. We also see
that (at least for larger a) query times grow more slowly
with object size than the I/O volume. We choose a = 8
for the comparison with competitors because it achieves
a good balance between space usage (≈ 5 bits/block) and
throughput (≈ 700k Queries/second).

7.2 PaCHash with Real World Data Sets. Fig-
ure 3c compares throughput and space usage of PaCHash
using real world size distributions and different index
data structures. The Twitter data set contains tweets
from 01.08.–05.08.2021 and has only small objects. The
UniRef 50 protein database [56] contains some objects
larger than the block size and the LZ4 compressed [14]
English Wikipedia from November 2021 contains signifi-
cantly larger objects. See Figures 3a and 3b for details.

The entropy coded bit vector saves up to one bit of
internal memory per block for small a. While it comes

with a performance penalty caused by decompression (up
to eight times slower than Elias-Fano), it is fast enough
that it can be useful for some applications. Succincter
provides space usage lower than Elias-Fano but has no
implementation. Note that for a ≤ 16, the entropy coded
bit vector requires even less space than succincter. Only
for a ≥ 64 it requires more space than Elias-Fano.

7.3 Comparison with Competitors. Figure 4 com-
pares PaCHash to other hash table data structures – see
Table 5 for the exact configurations used. These plots
include measurements for identical size objects in order
to allow for a large set of competitors and measurements
for variable size objects containing fewer data points due
to the lack of support for variable size objects by most
competitors.

Perhaps the closest contender to PaCHash is the
Separator method where our implementation partially
allows variable object size. It needs comparable internal
space and has faster queries (always a single block access).
However, Separator not only has slower construction,
but it also cannot achieve a load factor close to 100%
except for objects with identical size when the block size
is divisible by the object size. Figure 5 gives details
showing load factors between 85% and 95% in typical
cases.

The perfect hashing methods CHD and RecSplit have
similar problems with respect to variable size objects and
are more expensive with respect to internal space and
construction costs. While PTHash offers fast construction
and queries, it does not support variable size objects and
needs more internal space. Cuckoo hashing needs no
internal space but has more expensive queries and the
same problem with high load factors as Separator or
perfect hashing.
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Twitter UniRef 50 Wikipedia

Objects n 20 238 968 48 531 431 16 181 427
Average size 115 B 281 B 1731 B
Median size 94 B 194 B 77 B
Maximum size 560 B 45 KB 272 KB
Total size N 2.4 GB 13.2 GB 26.3 GB
Objects > B 0% 0.08% 12%

(a) Twitter, UniRef, and Wikipedia real world data sets we use
for benchmarks. The median of 77 bytes of the Wikipedia data
set is caused by pages that are redirects.
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(b) Relative occurrences of object sizes in the real
world data sets described in Figure 3a.
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(c) PaCHash with real world data sets using different index data structures. There is no practical implementation of
Succincter [52], so we only give calculated values and no throughput. The space usage of Elias-Fano and Succincter is
independent of the object size distribution, so we plot it only for one data set.

Figure 3: Space and query throughput of PaCHash with real world data sets.

The object stores LevelDB, RocksDB, and SILT
have much larger internal space requirements and some
external overhead. In part this comparison is unfair since
they have additional functionality like dynamic operation.
For SILT and LevelDB we have been able to extract the
static part but still get considerably more space and
lower performance than PaCHash. Figure 4 contains
measurements for both the full competitors and their
static parts, so the overhead originating from dynamic
operation can be read off it. Comparing query throughput
is complicated because of different file access modes,
internal caching, and history dependent performance for
the actual SSD accesses (the controller uses caching and
rearranges data outside the control of the user). We have
therefore looked at two different access methods and also
at only the index data structure. However, overall, we
get a consistent picture with Separator being the fastest
method followed by PaCHash. A comparison with the
vanilla internal hash table std::unordered map is also
instructive. We naturally get faster construction and
high internal space consumption. Surprisingly, access to
the internal data structure is only faster than PaCHash
for very small inputs that fit into cache.

While not as surprisingly, it should be noted that all
object stores supporting variable size objects do not show
any difference with respect to (internal and/or external)
space requirements, construction and query throughput
when storing variable size objects compared to identical
size objects. Thus, all benefits of PaCHash described
above hold true for variable size objects as well.

8 Conclusion and Future Work

With PaCHash, we present a static hash table that can
space-efficiently store variable size (possibly compressed)
objects. The objects are stored contiguously without the
usual need for empty space to equalize the nonuniformity
in assignment by a hash function. This is facilitated
by an index data structure that needs only a constant
number of internal memory bits per external memory
block. In constant expected time, it yields a near-optimal
range of blocks that contain the sought object. Our
implementation of PaCHash considerably outperforms
previous object stores for variable size objects and even
matches or outperforms systems that are purely internal
memory or only handle objects of identical size.

Future work might include integrating PaCHash
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CHD (16-perfect) [7] LevelDB [32] RecSplit [20] SILT (Static part) [41]

Cuckoo (here) PTHash [53] RocksDB [21] Separator (here)

LevelDB (Static part) [32] PaCHash (here) SILT [41] std::unordered map

Figure 4: Comparison of object stores using objects of identical size 256 bytes (top) and uniform random size
∈ [128, 384] bytes (bottom). Keys are 8 byte random strings. Dotted lines indicate methods supporting only objects
of identical size natively. We enhanced two of them to partially support variable size objects (see Section 7).
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Table 5: Configurations of competitors

Competitor Configuration parameters

CHD [7] Load factor 0.98. k = 16 collisions. Bin size 12.
Cuckoo (here, based on [5, 50]) 2 alternative positions for each object, loaded in parallel to reduce latency.

Streamed queries with await any. Load factor 0.95. Random walk insertion.
LevelDB [32] No compression. Construction using a single, large write batch. No Bloom

filters.
PaCHash (here) a = 8. External blocks store a table of keys and offsets. Streamed queries

with await any.
PTHash [53] “Optimizing the general trade-off” [53] with α = 0.94, c = 7, D-D Encoding.
RecSplit [20] Leaf size ℓ = 8. Bucket size b = 2000.
RocksDB [21] Block cache disabled. No memory mapping or WAL. Queries use batches

of size 64. No Bloom filters.
Separator (here, based on [31, 39]) 6 bit separators. Load factor 0.96. Streamed queries with await any.
SILT [41] testCombi.xml configuration from original repository.
std::unordered map 8 byte keys. 64 bit pointers to object contents.
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Figure 5: Maximum achievable load factor with different distributions of object sizes of our implementations of
Separator Hashing and Cuckoo Hashing that support variable size objects. For an average object size s, the normal
distribution has a variance of s/5 and the uniform random sizes are drawn from [0.25s, 1.75s]

into dynamic external memory object stores, as well
as engineering fast and space efficient internal memory
variants. On the theoretical side, we would like to better
understand the space requirements and lower bounds of
bit vectors with entropy coding. This includes relations to
different variants of perfect hashing. Although our current
analysis assumes random hash functions, PaCHash may
also be provably efficient for more realistic simple hash
functions. Further possible space-saving can use the
quotienting idea [35, 8, 3, 13] where some bits of the
stored keys are derived from the (now invertible) hash
function value. It is interesting how this works best in
the presence of nonuniformly distributed keys.
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[39] Per-Åke Larson and Ajay Kajla. File organization:
Implementation of a method guaranteeing retrieval in
one access. Commun. ACM, 27(7):670–677, 1984.
doi:10.1145/358105.358193.
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